Monatsarchiv 2024-11-13

best combination heating and air conditioning units

A modular air conditioning unit is an air treatment equipment assembled from various air treatment functional sections. A series of products that can comprehensively treat air quality according to the process requirements of temperature, humidity, and cleanliness required by various types of factory production lines. The air volume range is from 650 cubic meters/hour to 30000 cubic meters/hour. Based on the actual needs of users and on-site installation space, it can achieve diversified structural combinations to meet the needs of various pharmaceutical machinery and food processing assembly lines. Welcome to inquire by email.

air conditioning units

Waste heat recovery from spray painting exhaust gas

Spray coating is a surface treatment method that sprays plastic powder onto parts, widely used in various fields such as automotive, electronic products, furniture and appliances, construction industry, machinery, and public facilities. The waste heat recovery plate heat exchanger for spray coating waste gas is an energy recovery device that can recover and utilize the heat energy generated during the high-temperature baking process of spray coating.


working principle:
The plate heat exchanger for waste heat recovery from spray coating waste gas transfers the heat from the dry waste gas to other media, such as fresh air or water, to achieve energy recovery and utilization. The device consists of a series of parallel arranged metal plates, and the gas from the heat source and cold source flows cross between the plates, achieving heat transfer through thermal conduction and convective heat transfer of the metal plates.
Application areas:
Spray painted waste gas heat recovery plate heat exchangers are widely used in industries that require a large amount of thermal energy, such as metallurgy, chemical industry, building materials, machinery, electricity, etc. In these industries, the exhaust and smoke exhaust of various smelting furnaces, heating furnaces, internal combustion engines, and boilers, as well as the residual heat of flue gas from industrial kilns, are the main objects of waste heat recovery.
Product advantages:
Efficient heat transfer: The plate type gas waste heat recovery heat exchanger adopts an efficient plate design with a high total heat transfer film coefficient, which can quickly and effectively transfer heat.
Compact structure: The equipment occupies a small area, is lightweight, and has a large heat exchange area per unit volume, making it suitable for situations with limited space.
Safe and reliable: The equipment adopts a fully welded form, and the manufacturing process strictly follows the enterprise standards. Multiple pressure testing procedures ensure that the equipment can be used for a long time without leakage.
Energy saving and environmental protection: By using heat exchange to cool down the waste heat flue gas, the heat recycling system achieves the goal of energy saving, improves the economic efficiency of the enterprise, and reduces operating costs.
matters needing attention:
When selecting and using spray coating waste gas heat recovery plate heat exchangers, it is necessary to design and install them according to specific spray coating process parameters and requirements. It is important to ensure that the selection of the heat exchanger is appropriate, the material is heat-resistant, and appropriate control measures are taken to ensure the stability and safety of the heat exchange process.

Exhaust gas heat exchanger for heat pump drying

The exhaust gas heat exchanger for heat pump drying is a device used to recover and reuse the waste heat generated during the drying process. It can improve energy efficiency, reduce operating costs, and minimize environmental impact, making it an indispensable part of modern industry.
working principle:
Plate heat exchangers are composed of heat exchange cores, guide vanes, fixed frames, etc. They adopt cross flow, counter flow, or cross counter flow structures to ensure that the two airflows do not mix and to avoid the transfer of odors and moisture. This design improves the efficiency and reliability of heat exchange. When there is a temperature difference between two airflows, they will exchange heat through a heat-conducting plate. The hotter side transfers heat to the cooler side to achieve energy recovery. Plate heat exchangers adopt a modular structure, with low maintenance costs and easy use. According to different air flow channels, it can be divided into cross flow, counter flow, and cross counter flow types to meet different application requirements.
Plate heat exchangers are not only used in heat pump drying systems, but also widely used in various industries such as HVAC, communication, power, textile, automotive, food, medical, agriculture, animal husbandry, etc., for ventilation, energy recovery, cooling, preheating, dehumidification, and waste heat recovery.

Plate heat exchanger for drying linen in hotels and laundry industry

Application principle:
During the washing and drying process of linen, steam or hot water enters one side of the plate heat exchanger as a high-temperature fluid, while the air to be heated (for drying) enters the other side as a low-temperature fluid. Through a plate heat exchanger, the high-temperature fluid transfers heat to the low-temperature fluid, causing the air temperature to rise and achieving the purpose of preheating.
Plate heat exchangers have good thermal conductivity and can effectively transfer the heat of steam to linen, improving thermal efficiency. This means that the drying process of linen can be completed faster or energy consumption can be reduced with the same energy consumption.
Structural design: The plate heat exchanger is composed of multiple thin metal plates that form sealed channels between them. Metal plates are usually made of materials with good thermal conductivity, such as aluminum foil, copper foil, or stainless steel foil.
Energy saving and environmental protection: By recycling and reusing heat energy, plate heat exchangers can reduce steam consumption, lower energy consumption, and protect the environment. This is particularly important for places such as hotels, guesthouses, hospitals, and the laundry industry that require a large amount of washing and drying of linen.
The application principle of the plate heat exchange core of the linen washing and drying heat exchanger is based on the basic principles of heat conduction and convection, and efficient heat exchange is achieved through reasonable structural design and material selection.

Heat exchanger for sludge drying

Air heat exchangers play a crucial role in the low-temperature drying process of sludge. Based on the thermal conductivity and corrosion resistance of epoxy aluminum foil material, efficient low-temperature drying of sludge is achieved by optimizing the heat exchange process.


working principle:
It uses a heat pump system to cool and dehumidify the humid air from the drying chamber through an evaporator, while heating and reheating it through a condenser to produce dry hot air that is sent into the drying chamber.
Application effect:
Epoxy aluminum foil, as a material for heat exchangers, has efficient thermal conductivity that helps to quickly transfer heat and improve heat exchange efficiency. Meanwhile, due to its corrosion resistance, it can effectively resist the erosion of corrosive gases and substances that may be generated during the sludge drying process, extending the service life of the equipment.
The application principle of the low-temperature sludge dryer heat exchanger is mainly based on the thermal conductivity and corrosion resistance of epoxy aluminum foil material. By optimizing the heat exchange process, efficient low-temperature sludge drying can be achieved.

Plate heat exchanger for drying beef and pork

working principle:
During the drying process of beef and pork, the high-temperature moisture (exhaust gas) generated is transferred to the fresh air entering the system through the heat exchange core. In this way, fresh air is preheated before entering the drying area, thereby reducing the energy consumption required to heat the fresh air.
Structural features:
High quality hydrophilic aluminum foil is commonly used as a heat transfer conductor, with good heat transfer efficiency and a long service life (generally up to 8-10 years)
The channels for fresh air and exhaust gases are arranged in a cross pattern, separated by aluminum foil to ensure the cleanliness of the fresh air and prevent the spread of any odors and moisture.
All connections are sealed with sealant and treated with biting edge flowing adhesive to ensure the airtightness of the heat exchanger.
Performance advantages:
The heat exchange efficiency can reach up to 90%, which can significantly reduce energy consumption.
Compact structure, small volume, suitable for installation and use in various occasions.
Easy to maintain, easy to clean, can be directly cleaned with tap water or neutral detergent.

Heat recovery heat exchanger for livestock and poultry breeding ventilation

The energy recovery ventilation heat exchanger in livestock and poultry breeding houses is of great significance for modern animal husbandry. Mainly based on heat exchange technology, the fresh air entering the breeding house is preheated by recovering the heat from the discharged air, thereby achieving effective energy utilization and conservation. It has significant advantages in improving air quality, energy conservation and environmental protection, and enhancing comfort.


working principle
Energy transfer: The ventilation heat exchanger exchanges heat between the warm and humid air discharged and the fresh and cold air entering through its internal heat exchange core. In this process, the heat emitted from the air is transferred to fresh air, which is preheated before entering the livestock and poultry house.
Preventing cross contamination: Fresh air and exhaust air are strictly separated in the heat exchanger to avoid the transmission of any odors and moisture, ensuring the cleanliness of the fresh air.
Technical advantages

  1. By recycling the heat emitted from the air, the ventilation heat exchanger significantly reduces the energy consumption required for heating, achieving energy conservation and consumption reduction. This energy-saving effect is of great significance for reducing feeding costs.
  2. Improving air quality: Ventilation heat exchangers can not only recover heat, but also discharge polluted air and moisture from the house, improve the air environment of livestock and poultry houses, and reduce the concentration of harmful gases.
  3. Strong adaptability: Whether in cold winter or hot summer, ventilation heat exchangers can adjust the temperature and humidity of fresh air as needed, providing a comfortable living environment for livestock and poultry.

application area
Livestock and poultry farms: Ventilation heat exchangers are widely used in various livestock and poultry farms such as pig houses, chicken houses, and cattle houses, providing a suitable temperature and good air quality living environment for livestock and poultry.
Livestock related places: In addition to livestock and poultry breeding sites, ventilation heat exchangers can also be used for temperature and humidity control in livestock related places such as feed processing workshops and dairy production workshops.

Total heat recovery ventilation technology for home decoration fresh air system

The fresh air system is a common air treatment equipment in modern homes and commercial buildings, which can provide a continuous supply of fresh air and discharge indoor polluted air. In the fresh air system, heat recovery efficiency is a key indicator, and high heat recovery efficiency means that the system can more effectively recover energy during the ventilation process, thereby reducing energy consumption. Total heat exchange technology can recover heat and humidity while ventilating, reducing energy loss caused by ventilation and achieving energy conservation and consumption reduction.

Total heat recovery ventilation technology
Total heat recovery refers to the process in which a fresh air system, while introducing fresh outdoor air, recovers the heat and humidity from the discharged indoor air through a heat exchanger for heating or cooling the incoming fresh air. A total heat exchanger is an energy-saving device in a fresh air system that can exchange heat and humidity without mixing fresh air and exhaust air.
The application of total heat exchange technology not only reduces reliance on air conditioning and heating equipment, but also lowers overall energy consumption, in line with the concept of sustainable development. Choosing a suitable fresh air system can not only improve living comfort, but also achieve the goals of energy conservation, emission reduction, and carbon neutrality.

Total Heat Exchanger for Underground Parking Lots Ventilation

The total heat exchanger of the fresh air ventilation fan in underground parking lots is a key equipment used to improve the air quality of underground parking lots. It plays an important role in improving the air quality of underground parking lots, ensuring the health of personnel, and saving energy.
working principle
Underground parking lot fresh air centrifugal duct fans and total heat exchangers are usually used in combination to achieve efficient air exchange and temperature control.
The fresh air system introduces fresh outdoor air into the underground parking lot through pipelines, while also expelling polluted indoor air. The total heat exchanger exchanges heat between the fresh air and the exhaust air, recovers the heat from the exhaust air, and uses it to preheat or pre cool the fresh air, thereby improving energy utilization efficiency.
Functional Features
Efficient ventilation: It can quickly and effectively update the air in underground parking lots and maintain indoor air quality.
Energy saving and consumption reducing: The total heat exchanger reduces the energy consumption required for fresh air treatment and lowers operating costs by recovering heat from exhaust air.
High air volume design: Suitable for the large space and high air volume requirements of underground parking lots, ensuring effective air circulation.
Anwendungsszenarien
Underground parking lot: mainly used for ventilation and temperature control in multi-level underground parking lots.
Other enclosed spaces: also applicable to other enclosed spaces that require efficient ventilation and energy conservation, such as shopping malls, hotels, offices, etc.

Heat exchanger heat recovery equipment for drying chrysanthemums and honeysuckle

working principle:
During the drying process of chrysanthemums and honeysuckle, the high-temperature moisture (exhaust) generated is transferred to the fresh air entering the system through the heat exchange core. In this way, the fresh air is preheated before entering the drying area, thereby reducing the energy consumption required to heat the fresh air.
Structural features:
High quality hydrophilic aluminum foil is usually used as a heat transfer conductor, which has good heat transfer efficiency and a long service life (generally up to 8-10 years)
The channels for fresh air and exhaust air are arranged in a cross pattern, separated by aluminum foil to ensure the cleanliness of the fresh air and avoid the transmission of any odors and moisture.
All connections are sealed with sealant and treated with biting edge flow adhesive to ensure the airtightness of the heat exchanger.
Performance advantages:
The heat exchange efficiency is as high as 90%, which can significantly reduce energy consumption.
Compact structure, small volume, suitable for installation and use in various occasions.
Easy to maintain, easy to clean, can be directly cleaned with tap water or neutral detergent.

de_DEDeutsch