Category Archive Industries And Solutions

The utilization of air-to-air heat exchangers in ventilation and energy-saving engineering

The core function of an air-to-air heat exchanger is to transfer the residual heat carried in the exhaust air (indoor exhaust air) to the fresh air (outdoor intake air) through heat exchange, without directly mixing the two airflows. The entire process is based on the principles of heat conduction and energy conservation, as follows:

Exhaust waste heat capture:
The air expelled indoors (exhaust) usually contains a high amount of heat (warm air in winter and cold air in summer), which would otherwise dissipate directly to the outside.
The exhaust air flows through one side of the heat exchanger, transferring heat to the heat conducting material of the heat exchanger.
Heat transfer:
Air to air heat exchangers are usually composed of metal plates, tube bundles, or heat pipes, which have good thermal conductivity.
Fresh air (air introduced from outside) flows through the other side of the heat exchanger, indirectly contacting the heat on the exhaust side, and absorbing heat through the wall of the heat exchanger.
In winter, fresh air is preheated; In summer, the fresh air is pre cooled (if the exhaust air is air conditioning cold air).
Energy recovery and conservation:
By preheating or pre cooling fresh air, the energy consumption of subsequent heating or cooling equipment is reduced. For example, in winter, the outdoor temperature may be 0 ° C, with an exhaust temperature of 20 ° C. After passing through a heat exchanger, the fresh air temperature may rise to 15 ° C. This way, the heating system only needs to heat the fresh air from 15 ° C to the target temperature, rather than starting from 0 ° C.
Airflow isolation:
Exhaust and fresh air flow through different channels in the heat exchanger to avoid cross contamination and ensure indoor air quality.
technological process
Exhaust collection: indoor exhaust gas is guided to the air-to-air heat exchanger through a ventilation system (such as an exhaust fan).
Fresh air introduction: Outdoor fresh air enters the other side of the heat exchanger through the fresh air duct.
Heat exchange: Inside the heat exchanger, exhaust and fresh air exchange heat in isolated channels.
Fresh air treatment: Preheated (or pre cooled) fresh air enters the air conditioning system or is directly sent into the room, and the temperature or humidity is further adjusted as needed.
Exhaust emission: After completing heat exchange, the exhaust temperature decreases and is finally discharged outdoors.
Types of air-to-air heat exchangers
Plate heat exchanger: composed of multiple layers of thin plates, with exhaust and fresh air flowing in opposite or intersecting directions in adjacent channels, resulting in high efficiency.
Wheel heat exchanger: using rotating heat wheels to absorb exhaust heat and transfer it to fresh air, suitable for high air volume systems.
Heat pipe heat exchanger: It utilizes the evaporation and condensation of the working fluid inside the heat pipe to transfer heat, and is suitable for scenarios with large temperature differences.
advantage
Energy saving: Recovering 70% -90% of exhaust waste heat, significantly reducing heating or cooling energy consumption.
Environmental Protection: Reduce energy consumption and lower carbon emissions.
Enhance comfort: Avoid direct introduction of cold or hot fresh air and improve indoor environment.

Mine exhaust heat extraction box with built-in air-to-air heat exchanger

The built-in air-to-air heat exchanger in the mine exhaust heat extraction box is a device specifically designed to recover waste heat from mine exhaust air. Mine exhaust refers to the low-temperature, high humidity waste gas discharged from a mine, which usually contains a certain amount of heat but is traditionally discharged directly without being utilized. This device uses a built-in air-to-air heat exchanger (i.e. air-to-air heat exchanger) to transfer heat from the exhaust air to another stream of cold air, thereby achieving the goal of waste heat recovery.

Working principle
Lack of air input: The mine's lack of air is introduced into the heat extraction box through the ventilation system. The temperature of the exhaust air is generally around 20 ℃ (the specific temperature varies depending on the depth of the mine and the environment), and the humidity is relatively high.
Function of Air to Air Heat Exchanger: The built-in air to air heat exchanger usually adopts a plate or tube structure, and the exhaust air and cold air exchange heat through a partition type in the heat exchanger. The heat from the lack of wind is transferred to the cold air, while the two airflows do not mix directly.
Heat output: After being heated by heat exchange, the cold air can be used for anti freezing of mine air inlet, heating of mining area buildings, or domestic hot water, while the exhaust air is discharged at a lower temperature after releasing heat.
Characteristics and advantages
Efficient and energy-saving: Air to air heat exchangers do not require additional working fluids and directly utilize the heat transfer from air to air. They have a simple structure and low operating costs.
Environmental friendliness: By recycling exhaust heat and reducing energy waste, it meets the requirements of green and low-carbon development.
Strong adaptability: The equipment can be customized and designed according to the flow rate and temperature of the mine exhaust, suitable for mines of different scales.
Easy maintenance: Compared to heat pipe or heat pump systems, air-to-air heat exchangers have a relatively simple structure and require less maintenance.
Application scenarios
Anti freezing at the wellhead: Use the recovered heat to heat the mine air intake and avoid freezing in winter.
Building heating: providing heating for office buildings, dormitories, etc. in the mining area.
Hot water supply: Combined with the subsequent system, provide a heat source for domestic hot water in the mining area.
precautions
Moisture treatment: Due to the high humidity of the exhaust air, the heat exchanger may face the problem of condensation water accumulation, and a drainage system or anti-corrosion materials need to be designed.
Heat transfer efficiency: The efficiency of an air-to-air heat exchanger is limited by the specific heat capacity and temperature difference of the air, and the recovered heat may not be as high as that of a heat pump system, but its advantage lies in its simple structure.

Application of Air-to-Air Heat Recovery Exchanger in Livestock Ventilation

The Air-to-Air Heat Recovery Exchanger plays a vital role in the livestock ventilation industry by enhancing energy efficiency and maintaining optimal indoor conditions. Designed to recover waste heat from exhaust air, this exchanger transfers thermal energy from the warm, stale air expelled from livestock facilities to the incoming fresh, cooler air without mixing the two streams. In poultry houses, pig barns, and other breeding environments, where consistent temperature control and air quality are critical, it reduces heating costs in winter by pre-warming fresh air and mitigates heat stress in summer through effective thermal regulation. Typically constructed with corrosion-resistant materials like aluminum or stainless steel, it withstands the humid and ammonia-rich conditions common in livestock settings. By integrating into ventilation systems, the exchanger not only lowers energy consumption but also supports sustainable farming practices, ensuring animal welfare and operational efficiency. Its application is particularly valuable in large-scale breeding operations aiming to balance cost-effectiveness with environmental responsibility.

Air-to-Air Heat Recovery Exchanger

Fully automatic non partition air filter production line

Fully automatic non partition air filter production line

The fully automatic non partition air filter production line is a highly automated production system, typically used to produce high-performance air filters, widely used in industrial, commercial, and household air purification equipment. Its core feature is the use of a non partition design to improve the filtration efficiency of the air filter and reduce the resistance of air flow.

Main features:
Partition free design: Traditional air filters typically use partitions to separate the filter material layer, while partition free design can effectively reduce obstacles to air flow, thereby improving filtration efficiency and reducing energy consumption.
Fully automated operation: From raw material cutting, filter material assembly, to finished product packaging, the production line achieves full automation, reduces manual intervention, and improves production efficiency and consistency.
High precision control system: By integrating advanced automation control systems and sensors, it ensures precise control of the production process and achieves high-quality filter products.
Fast switching and flexibility: The production line supports the production of filters of different specifications and types, and can quickly switch production modes to meet the needs of different customers.
Efficient production capacity: Design efficient processes and modular systems that can meet large-scale production requirements and ensure stable product quality.

Comparison of PUE for Data Center Cooling Technologies

PUE (Power Usage Effectiveness) is an important indicator for measuring energy efficiency in data centers. Ideally, the closer the PUE value is to 1, the higher the energy utilization efficiency. The following are typical PUE value ranges for various cooling technologies:

冷却技术典型PUE值适用场景
传统风冷1.7 - 2.5中小型数据中心、气候炎热地区
热/冷通道隔离1.3 - 1.6大型数据中心
间接蒸发冷却1.1 - 1.3干燥地区、节能要求高的数据中心
冷冻水系统1.2 - 1.5高密度负载
浸没式液冷1.05 - 1.2高性能计算(HPC)、超高热密度场景
自由冷却1.1 - 1.3寒冷地区
热回收冷却1.2 - 1.4热能循环利用需求高的数据中心
AI智能温控1.1 - 1.2超大规模数据中心

best combination heating and air conditioning units

A modular air conditioning unit is an air treatment equipment assembled from various air treatment functional sections. A series of products that can comprehensively treat air quality according to the process requirements of temperature, humidity, and cleanliness required by various types of factory production lines. The air volume range is from 650 cubic meters/hour to 30000 cubic meters/hour. Based on the actual needs of users and on-site installation space, it can achieve diversified structural combinations to meet the needs of various pharmaceutical machinery and food processing assembly lines. Welcome to inquire by email.

air conditioning units

Ventilation heat exchanger for vegetable low-temperature processing area and supermarket sorting area

In the low-temperature vegetable processing area, the main function of the ventilation heat exchanger is to ensure that the temperature of the processing environment is suitable to maintain the freshness and quality of the vegetables. Ventilation heat exchangers use efficient heat exchange technology to dissipate indoor heat while introducing external cold air or cooled air for effective temperature control.
In addition, the ventilation heat exchanger in the low-temperature vegetable processing area also needs to consider humidity control, as excessive humidity may cause vegetable rot. Therefore, some ventilation heat exchangers are also equipped with humidity regulation functions to ensure that the humidity in the processing environment remains within an appropriate range.
The sorting area of a supermarket or shopping mall is responsible for sorting, packaging, and delivering goods. The main function of the ventilation heat exchanger in this area is to provide fresh air and remove indoor turbid air and excess heat.
The ventilation heat exchanger in the sorting area of supermarkets usually has a large air volume and efficient heat exchange performance to meet the needs of large spaces and high pedestrian flow. At the same time, they also need to have the characteristics of easy maintenance and cleaning to ensure long-term stable operation.
Whether it is a low-temperature vegetable processing area or a supermarket sorting area, ventilation heat exchangers are indispensable and important equipment. They provide a comfortable and healthy working environment for these areas through efficient air conditioning and temperature control, which helps improve production efficiency and product quality.
Our cross countercurrent plate heat exchanger is made of high-quality hydrophilic aluminum foil, epoxy resin aluminum foil, stainless steel, polycarbonate and other materials. The air flows partially in cross flow and partially in relative flow to avoid the transmission of odors and moisture. Applied to energy recovery in civil and commercial ventilation systems, as well as industrial ventilation systems. Fast heat conduction, no secondary pollution, good heat transfer effect.

MariaDBCommercial ceiling heat pump type fresh air ventilator series

产品特点

Product Features1

The air volume range is 1000-10000 m³/h, in terms of ventilation and exchange functions, add air purification, energy recovery, refrigeration and heating functions to maximize the recovery of cold and heat in the exhaust. It is suitable for laboratories, computer rooms, cinemas and theaters, shopping malls, supermarkets, hospitals, hotels, offices, schools, nursing homes and any other public places.

具备双向换气、空气净化( G4+F5过滤)、全热板式一次能量回收,热泵系统二次能量回收功能,可达到 85% 能量回收效果。过滤器检修灵活,可选侧面(压机侧对面)或底部(压机侧对面下部)抽拉检修。

Equipped with bidirectional air exchange, air purification (G4+F5 filtration), total heat plate primary energy recovery, and heat pump system secondary energy recovery functions, it can achieve 85% energy recovery effect. The filter maintenance is easy, with options for side (opposite the press side) or bottom (opposite the press side and lower) pull-out maintenance.

液晶显示控制,多重保护,操作方便;具有高低压保护,排风温度保护,压缩机启动延迟保护,过载及相序保护等确保设备运行安全可靠。

LCD display control, multiple protections, easy operation; Equipped with high and low pressure protection, exhaust temperature protection, compressor start delay protection, overload and phase sequence protection to ensure safe and reliable equipment operation.

Automatic rolling shutter air filter

Automatic rolling shutter air filter is an air pre filtration and dust removal equipment that uses special chemical fiber rolls as the filtering medium, and uses the pressure difference before and after the filter as the sensing signal to automatically control the replacement of filter materials.

The automatic rolling shutter air filter is equipped with synthetic fiber filter material. The thickness is 8-20mm. The main raw material of the filter material is polyester fiber. The structural form often presents a density gradient arrangement and combination. This synthetic fiber composite filter material has the characteristics of good comprehensive ventilation and dust removal performance, high strength, etc. It is non-toxic, odorless, non-volatile, non irritating to the skin, and easy to operate.

The automatic rolling shutter air filter has the advantages of simple structure, low operating cost, and convenient use. It can be used in various intake purification places, especially for air purification of high air volume and low air pressure intake systems, such as in front of ventilation equipment and air conditioning units, and at the intake end of blower rooms.

Heat recovery for livestock and poultry houses: plate heat exchangers or rotary heat exchangers

The heat recovery products used in livestock and poultry houses mainly recover the heat energy in the exhaust through the principle of heat exchange and use it to preheat the fresh air entering the house. This not only ensures the minimum ventilation required in winter, but also reduces the heating energy consumption inside the building. This technology usually uses heat recovery ventilation equipment, such as plate heat exchangers or rotary heat exchangers, which can effectively capture the heat in the exhaust while ensuring the quality of the fresh air supply.

The main advantages include:

Reduce energy consumption: By recovering heat, the use of external heating equipment is reduced, significantly lowering energy costs.
Ensure air quality: Although heat recovery is carried out, it will not affect the circulation of air in the house, and the minimum ventilation rate can still be ensured to maintain the air quality in the livestock and poultry house.
Improving comfort: Preheating fresh air helps maintain a suitable temperature inside the house, reduce stress reactions in livestock and poultry, and improve production efficiency.
This technology is particularly important in cold winter regions as it can significantly reduce heating energy consumption while providing a healthy living environment for livestock and poultry.

Need Help?
en_USEnglish