著者アーカイブ シャオハイ

how does a cross flow heat exchanger work

A crossflow heat exchanger works by allowing two fluids to flow at right angles (perpendicular) to each other, typically with one fluid flowing through tubes and the other flowing across the outside of the tubes. The key principle is that heat is transferred from one fluid to the other through the walls of the tubes. Here's a step-by-step breakdown of how it works:

Components:

  1. Tube Side: One of the fluids flows through the tubes.
  2. Shell Side: The other fluid flows over the tubes, across the tube bundle, in a direction perpendicular to the flow of the fluid inside the tubes.

Working Process:

  1. Fluid Inlet: Both fluids (hot and cold) enter the heat exchanger at different inlets. One fluid (let's say the hot fluid) enters through the tubes, and the other fluid (cold fluid) enters the space outside the tubes.
  2. Fluid Flow:

    • The fluid flowing inside the tubes moves in a straight or slightly twisted path.
    • The fluid flowing outside the tubes crosses over them in a perpendicular direction. The path of this fluid can be either crossflow (directly across the tubes) or have a more complex configuration, like a combination of crossflow and counterflow.

  3. 熱伝達:

    • Heat from the hot fluid is transferred to the tube walls and then to the cold fluid flowing across the tubes.
    • The efficiency of heat transfer depends on the temperature difference between the two fluids. The larger the temperature difference, the more efficient the heat transfer.

  4. Outlet: After heat transfer, the now cooler hot fluid exits through one outlet, and the now warmer cold fluid exits through another outlet. The heat exchange process results in a temperature change in both fluids as they flow through the heat exchanger.

Design Variations:

  • Single-pass crossflow: One fluid flows in a single direction across the tubes, and the other fluid moves through the tubes.
  • Multi-pass crossflow: The fluid inside the tubes can flow in multiple passes to increase the contact time with the fluid outside, improving heat transfer.

Efficiency Considerations:

  • Crossflow heat exchangers are generally less efficient than counterflow heat exchangers because the temperature gradient between the two fluids decreases along the length of the heat exchanger. In counterflow, the fluids maintain a more consistent temperature difference, which makes it more effective for heat transfer.
  • However, crossflow heat exchangers are easier to design and are often used in situations where space is limited or where fluids need to be separated (like in air-to-air heat exchangers).

Applications:

  • Air-cooled heat exchangers (like in HVAC systems or car radiators).
  • Cooling of electronic equipment.
  • Heat exchangers for ventilation systems.

So, while not as thermally efficient as counterflow heat exchangers, crossflow designs are versatile and commonly used when simplicity or space-saving is important.

What is the difference between the crossflow and counter flow heat exchangers?

The main difference between crossflow and counterflow heat exchangers lies in the direction in which the two fluids flow relative to each other.

  1. Counterflow Heat Exchanger:

    • In a counterflow heat exchanger, the two fluids flow in opposite directions. This arrangement maximizes the temperature gradient between the fluids, which improves heat transfer efficiency.
    • Benefit: The counterflow design is typically more efficient because the temperature difference between the fluids is maintained across the entire length of the heat exchanger. This makes it ideal for applications where maximizing heat transfer is crucial.

  2. Crossflow Heat Exchanger:

    • In a crossflow heat exchanger, the two fluids flow perpendicular (at an angle) to each other. One fluid typically flows in a single direction, while the other flows in a direction that crosses the first fluid’s path.
    • Benefit: While the crossflow arrangement is not as thermally efficient as counterflow, it can be useful when space or design constraints exist. It is often used in situations where the fluids must flow in fixed paths, such as in air-cooled heat exchangers or situations with phase changes (e.g., condensation or evaporation).

Key Differences:

  • Flow Direction: Counterflow = opposite directions; Crossflow = perpendicular directions.
  • 効率: Counterflow tends to have higher heat transfer efficiency due to the more consistent temperature gradient between fluids.
  • アプリケーション: Crossflow is often used where counterflow isn't feasible due to design limitations or space constraints.

中国のヒートポンプ式新鮮空気換気システム

A heat pump fresh air ventilator system combines ventilation and energy recovery, using a heat pump to manage the temperature of incoming fresh air while simultaneously removing stale air from a space. This type of system is especially energy-efficient, as it not only improves indoor air quality but also recycles the thermal energy from the exhaust air.

Here’s how it typically works:

  1. Fresh Air Intake: The system draws in fresh air from the outside.
  2. Heat Pump Operation: The heat pump extracts heat from the exhaust air (or vice versa depending on the season) and transfers it to the incoming fresh air. In the winter, it can warm up the cold outside air; in the summer, it can cool the incoming air.
  3. Ventilation: As the system works, it also ventilates the space by removing stale, polluted air, maintaining a constant flow of fresh air without wasting energy.

The benefits include:

  • エネルギー効率: The heat pump reduces the need for additional heating or cooling, saving on energy costs.
  • Improved Air Quality: Constantly introducing fresh air helps remove indoor pollutants, ensuring better air quality.
  • Temperature Control: It can help maintain comfortable indoor temperatures year-round, whether heating or cooling is needed.

These systems are commonly used in energy-efficient buildings, homes, and commercial spaces where both air quality and energy savings are priorities.

Radiators for Sodium-Ion Battery Energy Storage Containers

Radiators for sodium-ion battery energy storage containers are critical for thermal management, ensuring battery performance, safety, and longevity. Sodium-ion batteries generate heat during operation, particularly in high-power or rapid charge-discharge cycles, requiring efficient cooling systems tailored to containerized storage setups. Below is a concise overview, reduced by 50% from the previous response and avoiding citations, focusing on radiators for sodium-ion battery applications.


Role of Radiators

  • Thermal Regulation: Maintain optimal battery temperatures (-20°C to 60°C) to prevent overheating or thermal runaway.
  • Lifespan Extension: Stable temperatures reduce material degradation, enhancing battery life.
  • Efficiency Boost: Consistent temperatures improve charge-discharge efficiency.

主な特徴

  • Wide Temperature Range: Supports sodium-ion batteries’ ability to operate from -30°C to 60°C, reducing complex cooling needs.
  • Safety Focus: Lowers risk of thermal issues, leveraging sodium-ion’s inherent stability.
  • Cost-Effective: Uses affordable materials (e.g., aluminum) to align with sodium-ion’s low-cost advantage.
  • Modular Design: Fits containerized systems for easy scaling and maintenance.


アプリケーション

  • Grid Storage: Large containers for renewable energy integration.
  • Electric Vehicles: Compact cooling for battery packs.
  • Industrial Backup: Reliable cooling for data centers or factories.


課題

  • Lower Energy Density: Larger battery volumes require expansive radiator coverage.
  • Cost Balance: Must remain economical to match sodium-ion’s affordability.
  • Environmental Durability: Needs resistance to corrosion in harsh climates.


Future Directions

  • Advanced Materials: Explore composites or graphene for better heat transfer.
  • Hybrid Systems: Combine air and liquid cooling for efficiency.
  • Smart Controls: Integrate sensors for adaptive cooling based on battery load.

temperature profile for cross flow heat exchanger

Here’s a breakdown of the temperature profile for a cross flow heat exchanger, specifically when both fluids are unmixed:


🔥 Cross Flow Heat Exchanger – Both Fluids Unmixed

➤ Flow Arrangement:

  • One fluid flows horizontally (say, hot fluid in tubes).
  • The other flows vertically (say, cold air across the tubes).
  • No mixing within or between the fluids.


📈 Temperature Profile Description:

▪ Hot Fluid:

  • Inlet temperature: High.
  • As it flows, it loses heat to the cold fluid.
  • Outlet temperature: Lower than inlet, but not uniform across the exchanger due to varying contact time.

▪ Cold Fluid:

  • Inlet temperature: Low.
  • Gains heat as it flows across the hot tubes.
  • Outlet temperature: Higher, but also varies across the exchanger.

🌀 Because of the crossflow and no mixing:

  • Each point on the exchanger sees a different temperature gradient, depending on how long each fluid has been in contact with the surface.
  • The temperature distribution is nonlinear and more complex than in counterflow or parallel flow exchangers.


📊 Typical Temperature Profile (schematic layout):

                ↑ Cold fluid in

High │ ┌──────────────┐
Temp │ │ │
│ │ │ → Hot fluid in (right side)
│ │ │
↓ └──────────────┘
Cold fluid out ← Hot fluid out

⬇ Temperature Curves:

  • Cold fluid gradually heats up — the curve starts low and arcs upward.
  • Hot fluid cools down — starts high and arcs downward.
  • The curves are not parallel, and not symmetrical due to crossflow geometry and varying heat exchange rate.


🔍 Efficiency:

  • The effectiveness depends on the heat capacity ratio and the NTU (Number of Transfer Units).
  • Generally less efficient than counterflow but more efficient than parallel flow.

両方の流体が混ざらないクロスフロー熱交換器

A 両方の流体が混ざらないクロスフロー熱交換器 refers to a type of heat exchanger where two fluids (hot and cold) flow perpendicular (at 90°) to each other, and neither fluid mixes internally or with the other. This configuration is common in applications like air-to-air heat recovery or automotive radiators.

Key Features:

  • Cross flow: The two fluids move at right angles to each other.
  • Unmixed fluids: Both the hot and cold fluids are confined to their respective flow passages by solid walls or fins, preventing any mixing.
  • Heat transfer: Occurs across the solid wall or surface separating the fluids.

Construction:

Typically includes:

Enclosed channels for the second fluid (e.g., water or refrigerant) to flow inside the tubes.

Tubes or finned surfaces where one fluid (e.g., air) flows across the tubes.

Common Applications:

  • Radiators in cars
  • Air-conditioning systems
  • Industrial HVAC systems
  • Heat recovery ventilators (HRVs)

Advantages:

  • No contamination between fluids
  • Simple maintenance and cleaning
  • Good for gases and fluids that must remain separate

心肺機能に使用されるクロスフロー熱交換器

体外循環(CPB)などの心肺機能に関わる分野において、クロスフロー熱交換器は患者の血液温度を調節するために不可欠な部品です。これらの装置は、開胸手術や一時的な心肺補助を必要とするその他の処置中に体外循環される血液を加温または冷却するために、人工心肺装置に組み込まれることがよくあります。

仕組み

クロスフロー熱交換器では、2つの流体(通常は血液と熱伝達媒体(水など))が互いに垂直に流れ、固体表面(金属またはポリマー製のプレート/チューブなど)によって分離されます。この固体表面によって流体が混ざることなく熱伝達が促進されます。この設計により、生体適合性を維持し、血液へのダメージを最小限に抑えながら、熱交換効率を最大限に高めることができます。

  • 血流経路: 人工心肺装置からの酸素化された血液は、1 セットのチャネルまたはチューブを通って流れます。
  • 水の流れの経路温度制御された水が隣接するチャネルセットを垂直方向に流れ、臨床上の必要性に応じて血液を温めたり冷やしたりします(例:低体温の誘発または復温)。
  • 熱伝達血液と水の間の温度勾配が、伝導面を介した熱交換を促進します。クロスフロー構造により、熱交換器全体の温度差が一定となり、高い熱伝達率を実現します。

主な特徴

  1. 生体適合性凝固、溶血、または免疫反応を防ぐために、材料(ステンレス鋼、アルミニウム、または医療グレードのポリマーなど)が選択されます。
  2. コンパクトなデザイン: クロスフロー交換器はスペース効率に優れ、CPB 回路への統合に不可欠です。
  3. 効率: 垂直方向の流れにより温度勾配が最大化され、平行方向の流れの設計に比べて熱伝達が向上します。
  4. 不妊症: システムは汚染を防ぐために密閉されており、単一患者に対する処置では使い捨てのコンポーネントがよく使用されます。
  5. コントロール: ヒータークーラーユニットと組み合わせることで、熱交換器は正確な血液温度を維持します (例: 低体温の場合は 28 ~ 32 °C、正常体温の場合は 36 ~ 37 °C)。

心肺手術における応用

  • 低体温誘導CPB 中は、血液を冷却して代謝需要を減らし、循環低下時に脳や心臓などの臓器を保護します。
  • 復温: 手術後は、熱ストレスを与えることなく血液を徐々に温めて正常な体温に戻します。
  • 温度調節体外式膜型人工肺(ECMO)やその他の長期循環補助システムにおいて安定した血液温度を維持します。

設計上の考慮事項

  • 表面積表面積が大きいほど熱伝達は向上しますが、プライミング量(回路を満たすために必要な流体の量)を最小限に抑えることとバランスをとる必要があります。
  • 流量: 血流は、効率的な熱伝達のために十分な乱流である必要がありますが、赤血球を損傷するほど乱流であってはなりません。
  • 圧力降下: 血流抵抗を最小限に抑える設計により、ポンプの過度な圧力を回避します。
  • 感染管理: ヒータークーラーユニット内の滞留水には細菌が生息する可能性がある(例: マイコバクテリウム・キメラ)、厳格なメンテナンスプロトコルが必要になります。

CPB回路における典型的なクロスフロー熱交換器は、血液が流れる薄壁チューブの束と、その周囲を温度制御された水が垂直方向に循環するウォータージャケットで構成されています。この熱交換器は、患者の深部体温からのリアルタイムフィードバックに基づいて水温を調整するヒータークーラーユニットに接続されています。

課題とリスク

  • 溶血乱流による過度のせん断応力は血液細胞に損傷を与える可能性があります。
  • 血栓形成性: 表面相互作用により血栓形成が引き起こされ、抗凝固剤(ヘパリンなど)が必要になる場合があります。
  • 空気塞栓症: プライミングが不適切だと気泡が発生し、バイパス中に重大な危険が生じる可能性があります。
  • 感染症: ヒーター・クーラーユニット内の汚染された水は、まれではあるが重篤な感染症と関連付けられています。

向流熱交換器はどのように機能しますか?

向流式熱交換器では、隣接する2枚のアルミニウム板が空気の通過経路を形成します。給気は板の片側を、排気はもう片側を通過します。空気の流れは、直交流式熱交換器のように垂直ではなく、平行なアルミニウム板に沿って互いに通過します。排気中の熱は、板を通して暖かい空気から冷たい空気へと伝達されます。
排気は湿気や汚染物質で汚染されている場合もありますが、空気の流れはプレート熱交換器と混ざることはなく、給気は新鮮できれいな状態を保ちます。

換気および省エネ工学における空気対空気熱交換器の利用

空気対空気熱交換器の中心的な機能は、排気(室内排気)に含まれる残留熱を熱交換によって新鮮な空気(室外吸気)に伝達することです。この際、2つの気流を直接混合することはありません。このプロセス全体は、熱伝導と省エネの原理に基づいており、以下の通りです。

排気廃熱回収:
屋内に排出される空気(排気)には通常、大量の熱(冬は暖かい空気、夏は冷たい空気)が含まれており、通常は屋外に直接放散されます。
排気は熱交換器の片側を流れ、熱交換器の熱伝導材料に熱を伝達します。
熱伝達:
空気対空気熱交換器は通常、熱伝導性に優れた金属板、チューブ束、またはヒートパイプで構成されています。
新鮮な空気(外部から導入された空気)は熱交換器の反対側を流れ、排気側の熱に間接的に接触し、熱交換器の壁を通して熱を吸収します。
冬には新鮮な空気が予熱され、夏には新鮮な空気が予冷されます(排気がエアコンの冷気の場合)。
エネルギーの回収と節約:
新鮮な空気を予熱または予冷することで、その後の暖房または冷房設備のエネルギー消費を削減できます。例えば、冬季には屋外温度が0℃で排気温度が20℃の場合、熱交換器を通過すると新鮮な空気の温度は15℃まで上昇します。これにより、暖房システムは新鮮な空気を0℃から加熱するのではなく、15℃から目標温度まで加熱するだけで済みます。
気流遮断:
排気と新鮮な空気は熱交換器内の異なるチャネルを通って流れるため、相互汚染が回避され、室内の空気の質が確保されます。
技術プロセス
排気収集:室内の排気ガスは換気システム(排気ファンなど)を通じて空気対空気熱交換器に導かれます。
外気導入:屋外の新鮮な空気は外気ダクトを通って熱交換器の反対側に入ります。
熱交換: 熱交換器内では、排気と新鮮な空気が独立したチャネルで熱を交換します。
外気処理: 予熱 (または予冷) された外気が空調システムに入るか、直接室内に送られ、必要に応じて温度や湿度がさらに調整されます。
排気:熱交換が完了すると排気温度が低下し、最終的に屋外に排出されます。
空気対空気熱交換器の種類
プレート式熱交換器: 複数の薄いプレート層で構成され、排気と新鮮な空気が隣接するチャネルで反対方向または交差方向に流れるため、効率が高くなります。
ホイール熱交換器: 回転する熱ホイールを使用して排気熱を吸収し、新鮮な空気に伝達します。高風量システムに適しています。
ヒートパイプ熱交換器:ヒートパイプ内の作動流体の蒸発と凝縮を利用して熱を伝達し、温度差が大きいシナリオに適しています。
アドバンテージ
省エネ:排気廃熱の70%~90%を回収し、暖房や冷房のエネルギー消費を大幅に削減します。
環境保護: エネルギー消費量を削減し、二酸化炭素排出量を削減します。
快適性の向上: 冷たいまたは熱い新鮮な空気が直接入るのを防ぎ、室内環境を改善します。

空気対空気熱交換器を内蔵した鉱山排気熱抽出ボックス

The built-in air-to-air heat exchanger in the mine exhaust heat extraction box is a device specifically designed to recover waste heat from mine exhaust air. Mine exhaust refers to the low-temperature, high humidity waste gas discharged from a mine, which usually contains a certain amount of heat but is traditionally discharged directly without being utilized. This device uses a built-in air-to-air heat exchanger (i.e. air-to-air heat exchanger) to transfer heat from the exhaust air to another stream of cold air, thereby achieving the goal of waste heat recovery.

動作原理
Lack of air input: The mine's lack of air is introduced into the heat extraction box through the ventilation system. The temperature of the exhaust air is generally around 20 ℃ (the specific temperature varies depending on the depth of the mine and the environment), and the humidity is relatively high.
Function of Air to Air Heat Exchanger: The built-in air to air heat exchanger usually adopts a plate or tube structure, and the exhaust air and cold air exchange heat through a partition type in the heat exchanger. The heat from the lack of wind is transferred to the cold air, while the two airflows do not mix directly.
Heat output: After being heated by heat exchange, the cold air can be used for anti freezing of mine air inlet, heating of mining area buildings, or domestic hot water, while the exhaust air is discharged at a lower temperature after releasing heat.
Characteristics and advantages
Efficient and energy-saving: Air to air heat exchangers do not require additional working fluids and directly utilize the heat transfer from air to air. They have a simple structure and low operating costs.
Environmental friendliness: By recycling exhaust heat and reducing energy waste, it meets the requirements of green and low-carbon development.
Strong adaptability: The equipment can be customized and designed according to the flow rate and temperature of the mine exhaust, suitable for mines of different scales.
Easy maintenance: Compared to heat pipe or heat pump systems, air-to-air heat exchangers have a relatively simple structure and require less maintenance.
アプリケーションシナリオ
Anti freezing at the wellhead: Use the recovered heat to heat the mine air intake and avoid freezing in winter.
Building heating: providing heating for office buildings, dormitories, etc. in the mining area.
Hot water supply: Combined with the subsequent system, provide a heat source for domestic hot water in the mining area.
precautions
Moisture treatment: Due to the high humidity of the exhaust air, the heat exchanger may face the problem of condensation water accumulation, and a drainage system or anti-corrosion materials need to be designed.
Heat transfer efficiency: The efficiency of an air-to-air heat exchanger is limited by the specific heat capacity and temperature difference of the air, and the recovered heat may not be as high as that of a heat pump system, but its advantage lies in its simple structure.

ヘルプが必要ですか?
ja日本語