タグアーカイブ Cross Flow Heat Exchanger

how does a cross flow heat exchanger work

A crossflow heat exchanger works by allowing two fluids to flow at right angles (perpendicular) to each other, typically with one fluid flowing through tubes and the other flowing across the outside of the tubes. The key principle is that heat is transferred from one fluid to the other through the walls of the tubes. Here's a step-by-step breakdown of how it works:

Components:

  1. Tube Side: One of the fluids flows through the tubes.
  2. Shell Side: The other fluid flows over the tubes, across the tube bundle, in a direction perpendicular to the flow of the fluid inside the tubes.

Working Process:

  1. Fluid Inlet: Both fluids (hot and cold) enter the heat exchanger at different inlets. One fluid (let's say the hot fluid) enters through the tubes, and the other fluid (cold fluid) enters the space outside the tubes.
  2. Fluid Flow:
    • The fluid flowing inside the tubes moves in a straight or slightly twisted path.
    • The fluid flowing outside the tubes crosses over them in a perpendicular direction. The path of this fluid can be either crossflow (directly across the tubes) or have a more complex configuration, like a combination of crossflow and counterflow.
  3. Heat Transfer:
    • Heat from the hot fluid is transferred to the tube walls and then to the cold fluid flowing across the tubes.
    • The efficiency of heat transfer depends on the temperature difference between the two fluids. The larger the temperature difference, the more efficient the heat transfer.
  4. Outlet: After heat transfer, the now cooler hot fluid exits through one outlet, and the now warmer cold fluid exits through another outlet. The heat exchange process results in a temperature change in both fluids as they flow through the heat exchanger.

Design Variations:

  • Single-pass crossflow: One fluid flows in a single direction across the tubes, and the other fluid moves through the tubes.
  • Multi-pass crossflow: The fluid inside the tubes can flow in multiple passes to increase the contact time with the fluid outside, improving heat transfer.

Efficiency Considerations:

  • Crossflow heat exchangers are generally less efficient than counterflow heat exchangers because the temperature gradient between the two fluids decreases along the length of the heat exchanger. In counterflow, the fluids maintain a more consistent temperature difference, which makes it more effective for heat transfer.
  • However, crossflow heat exchangers are easier to design and are often used in situations where space is limited or where fluids need to be separated (like in air-to-air heat exchangers).

Applications:

  • Air-cooled heat exchangers (like in HVAC systems or car radiators).
  • Cooling of electronic equipment.
  • Heat exchangers for ventilation systems.

So, while not as thermally efficient as counterflow heat exchangers, crossflow designs are versatile and commonly used when simplicity or space-saving is important.

temperature profile for cross flow heat exchanger

Here’s a breakdown of the temperature profile for a cross flow heat exchanger, specifically when both fluids are unmixed:


🔥 Cross Flow Heat Exchanger – Both Fluids Unmixed

➤ Flow Arrangement:

  • One fluid flows horizontally (say, hot fluid in tubes).
  • The other flows vertically (say, cold air across the tubes).
  • No mixing within or between the fluids.

📈 Temperature Profile Description:

▪ Hot Fluid:

  • Inlet temperature: High.
  • As it flows, it loses heat to the cold fluid.
  • Outlet temperature: Lower than inlet, but not uniform across the exchanger due to varying contact time.

▪ Cold Fluid:

  • Inlet temperature: Low.
  • Gains heat as it flows across the hot tubes.
  • Outlet temperature: Higher, but also varies across the exchanger.

🌀 Because of the crossflow and no mixing:

  • Each point on the exchanger sees a different temperature gradient, depending on how long each fluid has been in contact with the surface.
  • The temperature distribution is nonlinear and more complex than in counterflow or parallel flow exchangers.

📊 Typical Temperature Profile (schematic layout):

                ↑ Cold fluid in

High │ ┌──────────────┐
Temp │ │ │
│ │ │ → Hot fluid in (right side)
│ │ │
↓ └──────────────┘
Cold fluid out ← Hot fluid out

⬇ Temperature Curves:

  • Cold fluid gradually heats up — the curve starts low and arcs upward.
  • Hot fluid cools down — starts high and arcs downward.
  • The curves are not parallel, and not symmetrical due to crossflow geometry and varying heat exchange rate.

🔍 Efficiency:

  • The effectiveness depends on the heat capacity ratio and the NTU (Number of Transfer Units).
  • Generally less efficient than counterflow but more efficient than parallel flow.

cross flow heat exchanger with both fluids unmixed

A cross flow heat exchanger with both fluids unmixed refers to a type of heat exchanger where two fluids (hot and cold) flow perpendicular (at 90°) to each other, and neither fluid mixes internally or with the other. This configuration is common in applications like air-to-air heat recovery or automotive radiators.

Key Features:

  • Cross flow: The two fluids move at right angles to each other.
  • Unmixed fluids: Both the hot and cold fluids are confined to their respective flow passages by solid walls or fins, preventing any mixing.
  • Heat transfer: Occurs across the solid wall or surface separating the fluids.

Construction:

Typically includes:

Enclosed channels for the second fluid (e.g., water or refrigerant) to flow inside the tubes.

Tubes or finned surfaces where one fluid (e.g., air) flows across the tubes.

Common Applications:

  • Radiators in cars
  • Air-conditioning systems
  • Industrial HVAC systems
  • Heat recovery ventilators (HRVs)

Advantages:

  • No contamination between fluids
  • Simple maintenance and cleaning
  • Good for gases and fluids that must remain separate

a cross flow heat exchanger used in a cardiopulmonary

A cross-flow heat exchanger in a cardiopulmonary context, such as during cardiopulmonary bypass (CPB) procedures, is a critical component used to regulate a patient’s blood temperature. These devices are commonly integrated into heart-lung machines to warm or cool blood as it’s circulated outside the body during open-heart surgeries or other procedures requiring temporary heart and lung support.

How It Works

In a cross-flow heat exchanger, two fluids—typically blood and a heat transfer medium (like water)—flow perpendicular to each other, separated by a solid surface (e.g., metal or polymer plates/tubes) that facilitates heat transfer without mixing the fluids. The design maximizes heat exchange efficiency while maintaining biocompatibility and minimizing blood trauma.

  • Blood Flow Path: Oxygenated blood from the heart-lung machine flows through one set of channels or tubes.
  • Water Flow Path: Temperature-controlled water flows through an adjacent set of channels in a perpendicular direction, either warming or cooling the blood depending on the clinical need (e.g., inducing hypothermia or rewarming).
  • Heat Transfer: The temperature gradient between the blood and water drives heat exchange through the conductive surface. The cross-flow arrangement ensures a high heat transfer rate due to the constant temperature difference across the exchanger.

Key Features

  1. Biocompatibility: Materials (e.g., stainless steel, aluminum, or medical-grade polymers) are chosen to prevent clotting, hemolysis, or immune reactions.
  2. Compact Design: Cross-flow exchangers are space-efficient, crucial for integration into CPB circuits.
  3. Efficiency: The perpendicular flow maximizes the temperature gradient, improving heat transfer compared to parallel-flow designs.
  4. Sterility: The system is sealed to prevent contamination, with disposable components often used for single-patient procedures.
  5. Control: Paired with a heater-cooler unit, the exchanger maintains precise blood temperature (e.g., 28–32°C for hypothermia, 36–37°C for normothermia).

Applications in Cardiopulmonary Procedures

  • Hypothermia Induction: During CPB, the blood is cooled to reduce metabolic demand, protecting organs like the brain and heart during reduced circulation.
  • Rewarming: After surgery, the blood is gradually warmed to restore normal body temperature without causing thermal stress.
  • Temperature Regulation: Maintains stable blood temperature in extracorporeal membrane oxygenation (ECMO) or other long-term circulatory support systems.

Design Considerations

  • Surface Area: Larger surface areas improve heat transfer but must balance with minimizing priming volume (the amount of fluid needed to fill the circuit).
  • Flow Rates: Blood flow must be turbulent enough for efficient heat transfer but not so high as to damage red blood cells.
  • Pressure Drop: The design minimizes resistance to blood flow to avoid excessive pump pressure.
  • Infection Control: Stagnant water in heater-cooler units can harbor bacteria (e.g., Mycobacterium chimaera), necessitating strict maintenance protocols.

Example

A typical cross-flow heat exchanger in a CPB circuit might consist of a bundle of thin-walled tubes through which blood flows, surrounded by a water jacket where temperature-controlled water circulates in a perpendicular direction. The exchanger is connected to a heater-cooler unit that adjusts water temperature based on real-time feedback from the patient’s core temperature.

Challenges and Risks

  • Hemolysis: Excessive shear stress from turbulent flow can damage blood cells.
  • Thrombogenicity: Surface interactions may trigger clot formation, requiring anticoagulation (e.g., heparin).
  • Air Embolism: Improper priming can introduce air bubbles, a serious risk during bypass.
  • Infections: Contaminated water in heater-cooler units has been linked to rare but severe infections.

Kiln waste heat recovery and reuse system - gas stainless steel cross flow heat exchanger scheme

The kiln waste heat recovery and reuse system aims to fully utilize the high-temperature heat in the kiln exhaust gas, and achieve a win-win situation of energy conservation and environmental protection through gas stainless steel cross flow heat exchangers. The core of this solution lies in the use of a stainless steel cross flow heat exchanger, which efficiently exchanges heat between high-temperature exhaust gas and cold air, generating hot air that can be reused.

Working principle: The exhaust gas and cold air flow in a cross flow manner inside the heat exchanger and transfer heat through the stainless steel plate wall. After releasing heat from exhaust gas, it is discharged. Cold air absorbs the heat and heats up into hot air, which is suitable for scenarios such as assisting combustion, preheating materials, or heating.

Advantages:

Efficient heat transfer: The cross flow design ensures a heat transfer efficiency of 60% -80%.
Strong durability: Stainless steel material is resistant to high temperatures and corrosion, and can adapt to complex exhaust environments.
Flexible application: Hot air can be directly fed back to the kiln or used for other processes, with significant energy savings.
System process: Kiln exhaust gas → Pre treatment (such as dust removal) → Stainless steel heat exchanger → Hot air output → Secondary utilization.

This solution is simple and reliable, with a short investment return cycle, making it an ideal choice for kiln waste heat recovery, helping enterprises reduce energy consumption and improve efficiency.

Application of Cross Flow Heat Exchanger in Indirect Evaporative Cooling System of Data Center

The application of cross flow heat exchangers in Indirect Evaporative Cooling (IDEC) systems in data centers is mainly reflected in efficient heat exchange, reducing energy consumption, and improving data center cooling efficiency. Here are its key roles and advantages:

  1. Basic working principle
    Cross flow heat exchanger is a type of heat exchange device whose structure allows two streams of air to cross each other while maintaining physical isolation. In indirect evaporative cooling systems in data centers, it is typically used for heat exchange between cooling air and outdoor ambient air without direct mixing.
    The workflow is as follows:
    The primary air (data center return air) exchanges heat with the secondary air (external ambient air) through one side of the heat exchanger.
    The secondary air evaporates and cools in the humidification section, reducing its own temperature, and then absorbs heat in the heat exchanger to cool the primary air.
    After the primary air is cooled down, it is sent back to the data center to cool down the IT equipment.
    The secondary air is ultimately discharged outdoors without entering the interior of the data center, thus avoiding the risk of pollution.
  2. Advantages in Data Centers
    (1) Efficient and energy-saving, reducing cooling demand
    Reduce cooling load: By using cross flow heat exchangers, data centers can utilize external air cooling instead of relying on traditional mechanical refrigeration (such as compressors).
    Improve PUE (Power Usage Effectiveness): Reduce the operating time of mechanical cooling equipment, lower energy consumption, and make PUE values closer to the ideal state (below 1.2).
    (2) Completely physically isolated to avoid contamination
    Cross flow heat exchangers can ensure that outdoor air does not come into direct contact with the air inside the data center, avoiding pollution, dust, or humidity affecting IT equipment. They are suitable for data centers with high air quality requirements.
    (3) Suitable for various climatic conditions
    In dry or warm climates, indirect evaporative cooling systems are particularly effective and can significantly reduce the cooling costs of data centers.
    Even in areas with high humidity, optimizing the design of heat exchangers can improve heat exchange efficiency.
    (4) Reduce water resource consumption
    Compared to direct evaporative cooling (DEC), indirect evaporative cooling does not require direct spraying of water into the air of the data center, but rather indirect cooling through a heat exchanger, thus reducing water loss.
  3. Applicable scenarios
    Cross flow heat exchangers are widely used in the following types of data centers:
    Hyperscale Data Center: Requires efficient and energy-saving cooling solutions to reduce operating costs.
    Cloud computing data center: requires high PUE values and seeks more sustainable cooling methods.
    Edge Data Center: typically located in harsh environments, requiring efficient and low maintenance cooling systems.
  4. Challenge and Optimization Plan
    Heat exchanger size and efficiency: Larger cross flow heat exchangers can improve heat exchange efficiency, but they also increase the footprint, so optimization design is needed, such as using aluminum or composite material heat exchangers to improve heat exchange efficiency.
    Scaling and maintenance: Due to humidity changes, heat exchangers may experience scaling issues, requiring regular cleaning and the use of corrosion-resistant coatings to extend their lifespan.
    Control system optimization: Combined with intelligent control, dynamically adjust the working mode of the heat exchanger based on external environmental temperature, humidity, and data center load conditions to improve system adaptability.
  5. Future Development Trends
    New efficient heat exchange materials, such as nano coated heat exchangers, further improve heat exchange efficiency.
    Combined with AI intelligent control system, dynamically adjust the heat exchange according to the real-time load of the data center.
    Combining liquid cooling technology to further improve heat dissipation efficiency in high-density server rooms.

Cross flow heat exchangers play an important role in the indirect evaporative cooling system of data centers, providing efficient heat transfer, reducing energy consumption, minimizing pollution, and improving equipment reliability. They are currently one of the important technologies in the field of data center cooling, especially suitable for large-scale, high-efficiency data centers.

Need Help?
ja日本語