연간 아카이브 2024-11-05

Ventilation heat exchanger for vegetable low-temperature processing area and supermarket sorting area

In the low-temperature vegetable processing area, the main function of the ventilation heat exchanger is to ensure that the temperature of the processing environment is suitable to maintain the freshness and quality of the vegetables. Ventilation heat exchangers use efficient heat exchange technology to dissipate indoor heat while introducing external cold air or cooled air for effective temperature control.
In addition, the ventilation heat exchanger in the low-temperature vegetable processing area also needs to consider humidity control, as excessive humidity may cause vegetable rot. Therefore, some ventilation heat exchangers are also equipped with humidity regulation functions to ensure that the humidity in the processing environment remains within an appropriate range.
The sorting area of a supermarket or shopping mall is responsible for sorting, packaging, and delivering goods. The main function of the ventilation heat exchanger in this area is to provide fresh air and remove indoor turbid air and excess heat.
The ventilation heat exchanger in the sorting area of supermarkets usually has a large air volume and efficient heat exchange performance to meet the needs of large spaces and high pedestrian flow. At the same time, they also need to have the characteristics of easy maintenance and cleaning to ensure long-term stable operation.
Whether it is a low-temperature vegetable processing area or a supermarket sorting area, ventilation heat exchangers are indispensable and important equipment. They provide a comfortable and healthy working environment for these areas through efficient air conditioning and temperature control, which helps improve production efficiency and product quality.
Our cross countercurrent plate heat exchanger is made of high-quality hydrophilic aluminum foil, epoxy resin aluminum foil, stainless steel, polycarbonate and other materials. The air flows partially in cross flow and partially in relative flow to avoid the transmission of odors and moisture. Applied to energy recovery in civil and commercial ventilation systems, as well as industrial ventilation systems. Fast heat conduction, no secondary pollution, good heat transfer effect.

Waste heat recovery plate heat exchanger for grain drying

Grain drying is an important step in ensuring safe storage and reducing losses, and the drying heat exchanger plays a crucial role in this process. The grain drying heat exchanger can quickly complete the grain drying process and improve production efficiency through an efficient heat transfer mechanism. Meanwhile, adopting waste heat recovery technology can significantly reduce energy consumption, lower production costs, and reduce carbon emissions, which contributes to environmental protection.
structure type
Tube and tube heat exchanger: Tube and tube heat exchangers, also known as shell and tube heat exchangers, have a simple structure, low manufacturing difficulty, and are easy to clean and maintain. During the process of grain drying, high-temperature flue gas generated by burning coal or other fuels is used as the heat medium.
Plate heat exchanger: Plate heat exchangers are widely used in grain drying due to their simple structure and low manufacturing cost.
working principle
Waste heat recovery: During the drying process of grain, a large amount of heat is generated. The waste heat recovery system improves energy efficiency by collecting this waste heat and transferring it to new dry air.
Preheating air: Some advanced grain drying systems utilize waste heat recovery technology to preheat fresh air, further improving drying efficiency.
Application scope
Plate heat exchangers are suitable for various sizes and types of grain drying equipment, whether it is corn drying towers in large grain storage and logistics centers or grain dryers in small farms.

Plate heat exchanger for waste heat recovery in textile heat setting

During the heat setting process of textiles, a large amount of waste heat energy is usually generated. In order to effectively utilize this waste heat energy, a plate aluminum foil heat exchanger can be used for recycling.
The working principle is as follows:
Plate heat exchanger is an efficient heat exchange device commonly used to transfer heat between two fluids. In the textile heat setting machine, the plate heat exchanger can be placed at the hot air discharge port or flue gas discharge port of the heat setting machine. During the process of contact with the plate, the hot air or flue gas transfers heat to the recovery medium. After absorbing the residual heat energy from hot air or flue gas, the recycling medium can be used to heat water or other fluids for preheating, heating, or other thermal energy requirements in the textile process.
By using plate heat exchangers, textile heat setting machines can recover the waste heat energy from the discharged hot air or flue gas, reduce energy consumption, and improve energy utilization efficiency. This helps to reduce production costs, minimize environmental pollution, and contribute to the sustainable development of the textile industry.

Waste heat recovery core for granulation and drying of gas boilers

working principle:
Gas boiler granulation and drying waste heat recovery core achieves efficient heat exchange through gas-liquid phase change circulation of working liquid in a closed pipeline. The exhaust gas and fresh air (or air that needs to be heated) exchange heat through the heat exchange core of the plate heat exchanger, and the heat in the exhaust gas is transferred to the fresh air through the heat exchange core, causing the temperature of the fresh air to rise.
Application areas:
This system is widely used in industries such as ceramics, fertilizers, chemicals, feed, water purifiers, and building materials, and is suitable for situations that require high-temperature combustion air or process gases. For example, by using a waste heat recovery system to recover the high-temperature flue gas waste heat discharged from the circular cooler, the energy utilization efficiency of the production process can be improved and energy consumption can be reduced.
In summary, the waste heat recovery core of gas boiler granulation and drying achieves the recovery and reuse of exhaust gas waste heat through an efficient heat transfer mechanism, reducing production costs, improving energy utilization efficiency, and reducing environmental pollution. We can tailor the most suitable waste heat recovery solution based on specific production site conditions and your needs.

Plate heat exchanger for waste heat recovery of painting and spray painting exhaust gas

painting exhaust gas

working principle:
The waste heat recovery heat exchanger for painting and baking room exhaust gas is a device that exchanges energy between air and air through a heat-conducting plate, and uses the energy of exhaust air to pretreat fresh air, thereby achieving the purpose of energy recovery. The fresh air and exhaust air are completely separated by a heat-conducting plate to avoid cross contamination and ensure the cleanliness of the fresh air.
Product Introduction:
Our waste heat recovery heat exchanger is a cross flow plate type heat exchange core, made of hydrophilic aluminum foil, oxygen resin aluminum foil, stainless steel and other materials, with a heat transfer efficiency of over 95%. It can achieve efficient heat recovery without changing the existing coating production process. This device not only significantly improves energy efficiency, but also effectively reduces exhaust emissions, making your production process more environmentally friendly and efficient.
Core advantages
Efficient and energy-saving: Our gas air plate heat exchanger adopts composite phase change heat transfer technology, with a heat transfer efficiency of over 95%. It can achieve efficient heat recovery without changing the existing coating production process.
Environmental protection and emission reduction: By recovering the heat energy from exhaust gas and using it for fresh air preheating, the direct emission of exhaust gas is greatly reduced, reducing the environmental burden.
Intelligent operation: The system runs fully automatically without the need for manual supervision, ensuring safety and reliability, greatly reducing manual maintenance costs.
Flexible customization: Tailored the most suitable waste heat recovery solution according to the conditions of different production sites, with flexible and convenient installation.
Reduce costs: significantly reduce production costs caused by energy consumption, have a short investment return period, and rapidly enhance the market competitiveness of enterprises.

Widely used in automobile manufacturing, furniture baking paint, machine baking paint, high-temperature baking paint and other fields. Whether you are engaged in mass production or precision operations, gas air plate heat exchangers can provide you with customized energy-saving solutions.

Steam Heating Coils

  • Structural features
  • it adopts stainless steel tube sleeve & aluminum fin structure, and it is in close contact with steel tubethrough hydraulic expansion tube, which has better heat transfer effect.Made of high quality stainless steel tube, high thermal conductivity and strong corrosion resistance.Professional tube design,low resistance, higher heat transfer.Professional software selection to meet the needs of different users
  • Working conditionSteam pressure ≤0.5MPa, air supply temperature up to 150 degrees;When selecting the product, choose the economic operation wind speed range (1.5m/s-3.5m/s)In this way, it can get good economic operation results.The maximum size of a single size can be 5000mm x 2500mm, which can be assembled when thissize is exceeded.
  • Application
  • Air conditioning ventilation system.
  • Food and medicine drying system.
  • Petrochemicalheat exchange system.
  • Corrosion resistant place
Steam Heating Coils

Cross flow plate heat exchanger

QQ20241015-153001.png

Introduction: The heat exchange core is a cross flow heat exchange core, in which two streams of air with different temperatures flow in a positive cross flow, and heat exchange occurs between the two fluids, with their channels completely separated.

Cross flow plate heat exchangers can be applied to air handling units as the main component of heat recovery. Cross flow plate heat exchangers can also be applied to ventilation systems, installed in air ducts as the main component of the heat recovery section, and their installation positions can be flexibly switched.

Application scenarios: Waste heat recovery solutions for coating machines, laminating machines, etc., heat recovery solutions for drying vegetables, nuts, shrimp skin, and dried fish, waste heat recovery for paint baking rooms, energy-saving technologies for waste heat recovery of exhaust gases such as boiler and factory electricity.

The module structure can provide any size and stacking height combination to meet various airflow and scene applications.

Material: According to the on-site working conditions, various materials are available for selection, such as hydrophilic aluminum foil, epoxy resin aluminum foil, stainless steel, etc.

MariaDBCommercial ceiling heat pump type fresh air ventilator series

产品特点

Product Features1

The air volume range is 1000-10000 m³/h, in terms of ventilation and exchange functions, add air purification, energy recovery, refrigeration and heating functions to maximize the recovery of cold and heat in the exhaust. It is suitable for laboratories, computer rooms, cinemas and theaters, shopping malls, supermarkets, hospitals, hotels, offices, schools, nursing homes and any other public places.

具备双向换气、空气净化( G4+F5过滤)、全热板式一次能量回收,热泵系统二次能量回收功能,可达到 85% 能量回收效果。过滤器检修灵活,可选侧面(压机侧对面)或底部(压机侧对面下部)抽拉检修。

Equipped with bidirectional air exchange, air purification (G4+F5 filtration), total heat plate primary energy recovery, and heat pump system secondary energy recovery functions, it can achieve 85% energy recovery effect. The filter maintenance is easy, with options for side (opposite the press side) or bottom (opposite the press side and lower) pull-out maintenance.

液晶显示控制,多重保护,操作方便;具有高低压保护,排风温度保护,压缩机启动延迟保护,过载及相序保护等确保设备运行安全可靠。

LCD display control, multiple protections, easy operation; Equipped with high and low pressure protection, exhaust temperature protection, compressor start delay protection, overload and phase sequence protection to ensure safe and reliable equipment operation.

Commercial ceiling heat pump type fresh air ventilator series

Automatic rolling shutter air filter

Automatic rolling shutter air filter is an air pre filtration and dust removal equipment that uses special chemical fiber rolls as the filtering medium, and uses the pressure difference before and after the filter as the sensing signal to automatically control the replacement of filter materials.

The automatic rolling shutter air filter is equipped with synthetic fiber filter material. The thickness is 8-20mm. The main raw material of the filter material is polyester fiber. The structural form often presents a density gradient arrangement and combination. This synthetic fiber composite filter material has the characteristics of good comprehensive ventilation and dust removal performance, high strength, etc. It is non-toxic, odorless, non-volatile, non irritating to the skin, and easy to operate.

The automatic rolling shutter air filter has the advantages of simple structure, low operating cost, and convenient use. It can be used in various intake purification places, especially for air purification of high air volume and low air pressure intake systems, such as in front of ventilation equipment and air conditioning units, and at the intake end of blower rooms.

Automatic rolling shutter air filter

Biopharmaceutical waste heat recovery heat exchanger

The application principle of waste heat recovery equipment in biopharmaceutical enterprises is mainly to transfer the thermal energy in the pharmaceutical factory exhaust gas to the working medium through a heat exchanger, so as to raise its temperature, and then convert this thermal energy into useful energy, such as preheating air, hot water, steam, etc., to avoid energy waste and reduce exhaust gas emissions while protecting the environment.

Advantages of biopharmaceutical waste heat recovery heat exchanger:

Efficient heat transfer

Energy conservation and environmental protection

Easy to maintain

Customizable design

The use of plate heat exchangers for dehumidification and waste heat recovery in the process of biopharmaceutical waste heat recovery can effectively reduce energy consumption, improve efficiency, extend equipment service life, and help meet environmental requirements.

ko_KR한국어