작성자 아카이브 샤오하이

Comparison of PUE for Data Center Cooling Technologies

PUE (Power Usage Effectiveness) is an important indicator for measuring energy efficiency in data centers. Ideally, the closer the PUE value is to 1, the higher the energy utilization efficiency. The following are typical PUE value ranges for various cooling technologies:

冷却技术典型PUE值适用场景
传统风冷1.7 - 2.5中小型数据中心、气候炎热地区
热/冷通道隔离1.3 - 1.6大型数据中心
间接蒸发冷却1.1 - 1.3干燥地区、节能要求高的数据中心
冷冻水系统1.2 - 1.5高密度负载
浸没式液冷1.05 - 1.2高性能计算(HPC)、超高热密度场景
自由冷却1.1 - 1.3寒冷地区
热回收冷却1.2 - 1.4热能循环利用需求高的数据中心
AI智能温控1.1 - 1.2超大规模数据中心

Design of Drying, Dehumidification and Heat Recovery System

With the rapid development of manufacturing industry, many products require drying and dehumidification treatment during the production process. These processes not only require efficient moisture removal, but also require maintaining the characteristics and quality of the material. Traditional drying and dehumidification methods often consume high energy and may have adverse effects on the environment, such as emitting greenhouse gases and other pollutants.


By adopting efficient heat recovery technology, waste heat can be maximally recovered and reused to reduce energy consumption. Heat recovery technology has been widely applied in multiple industries to improve energy efficiency and reduce operating costs. But in the field of drying and dehumidification, the potential of this technology has not been fully tapped. We customize and develop a heat recovery system that suits your specific production needs and on-site conditions. We carefully design the system layout for you to ensure minimal loss of thermal energy during conversion and transmission. Welcome to inquire via email.

Heat recovery technology for air conditioning systems in shopping malls

In today's pursuit of high-quality shopping experience, we not only focus on the richness and diversity of products, but also care about the comfort and sustainability of the shopping environment.
The core of our company's air conditioning system heat recovery technology lies in the perfect combination of high-efficiency heat exchanger design and intelligent control system. It can efficiently collect the waste heat generated during the operation of air conditioning and convert it into valuable energy for winter heating, domestic hot water, and even pre cooling fresh air in shopping malls.
This process does not require additional energy consumption and can achieve internal energy recycling, significantly reducing the overall energy consumption cost of the mall. And it can automatically adjust the operating status and heat recovery intensity of the air conditioner. This means that whether it's scorching summer or cold winter, the mall can ensure constant temperature and humidity, providing customers with the most comfortable shopping environment while achieving the best energy-saving effect. Welcome to consult via email.

Energy saving scheme for heat recovery of central air conditioning system

In the operation of central air conditioning systems, we can adopt high-efficiency heat exchangers for energy-saving renovation plans, and can choose plate heat exchangers or microchannel heat exchangers with high heat transfer efficiency and low fluid resistance. Our heat exchanger has a larger heat transfer area and more efficient heat transfer performance, which can reduce energy consumption under the same heat transfer conditions. Install a waste heat recovery device in the central air conditioning system to recover and reuse the emitted heat. It can also be combined with heat pump technology, which is an efficient way of transferring heat energy by consuming a small amount of electricity or fuel energy to transfer the heat from a low-temperature heat source to a high-temperature heat source. The application of heat pump technology in central air conditioning systems can improve the coefficient of performance (COP) of the system and reduce energy consumption.

Free combination of heat exchangers for air conditioning units

Modular air conditioning units are an efficient and flexible central air conditioning solution that can be freely combined according to the actual needs of buildings, meeting different cooling or heating requirements by increasing or decreasing the number of units. Each unit is connected to each other through a return pipe and a supply pipe, forming a modular combination of a main return pipe and a main supply pipe.
We use plate heat exchangers, which have a heat transfer coefficient 3-5 times higher than tube heat exchangers under the same pressure loss. They occupy one-third of the space of tube heat exchangers and can achieve a heat recovery rate of over 90%.
Our air-cooled heat pump air conditioning unit adopts a compression refrigeration cycle, which is a dual-purpose air conditioning cooling and heating source unit. During summer cooling, outdoor air is used for heat dissipation (air cooling), while during winter heating, heat is extracted from outdoor air (air source).
Welcome to consult via email.

best combination heating and air conditioning units

A modular air conditioning unit is an air treatment equipment assembled from various air treatment functional sections. A series of products that can comprehensively treat air quality according to the process requirements of temperature, humidity, and cleanliness required by various types of factory production lines. The air volume range is from 650 cubic meters/hour to 30000 cubic meters/hour. Based on the actual needs of users and on-site installation space, it can achieve diversified structural combinations to meet the needs of various pharmaceutical machinery and food processing assembly lines. Welcome to inquire by email.

air conditioning units

Waste heat recovery from spray painting exhaust gas

Spray coating is a surface treatment method that sprays plastic powder onto parts, widely used in various fields such as automotive, electronic products, furniture and appliances, construction industry, machinery, and public facilities. The waste heat recovery plate heat exchanger for spray coating waste gas is an energy recovery device that can recover and utilize the heat energy generated during the high-temperature baking process of spray coating.


working principle:
The plate heat exchanger for waste heat recovery from spray coating waste gas transfers the heat from the dry waste gas to other media, such as fresh air or water, to achieve energy recovery and utilization. The device consists of a series of parallel arranged metal plates, and the gas from the heat source and cold source flows cross between the plates, achieving heat transfer through thermal conduction and convective heat transfer of the metal plates.
Application areas:
Spray painted waste gas heat recovery plate heat exchangers are widely used in industries that require a large amount of thermal energy, such as metallurgy, chemical industry, building materials, machinery, electricity, etc. In these industries, the exhaust and smoke exhaust of various smelting furnaces, heating furnaces, internal combustion engines, and boilers, as well as the residual heat of flue gas from industrial kilns, are the main objects of waste heat recovery.
Product advantages:
Efficient heat transfer: The plate type gas waste heat recovery heat exchanger adopts an efficient plate design with a high total heat transfer film coefficient, which can quickly and effectively transfer heat.
Compact structure: The equipment occupies a small area, is lightweight, and has a large heat exchange area per unit volume, making it suitable for situations with limited space.
Safe and reliable: The equipment adopts a fully welded form, and the manufacturing process strictly follows the enterprise standards. Multiple pressure testing procedures ensure that the equipment can be used for a long time without leakage.
Energy saving and environmental protection: By using heat exchange to cool down the waste heat flue gas, the heat recycling system achieves the goal of energy saving, improves the economic efficiency of the enterprise, and reduces operating costs.
matters needing attention:
When selecting and using spray coating waste gas heat recovery plate heat exchangers, it is necessary to design and install them according to specific spray coating process parameters and requirements. It is important to ensure that the selection of the heat exchanger is appropriate, the material is heat-resistant, and appropriate control measures are taken to ensure the stability and safety of the heat exchange process.

Exhaust gas heat exchanger for heat pump drying

The exhaust gas heat exchanger for heat pump drying is a device used to recover and reuse the waste heat generated during the drying process. It can improve energy efficiency, reduce operating costs, and minimize environmental impact, making it an indispensable part of modern industry.
working principle:
Plate heat exchangers are composed of heat exchange cores, guide vanes, fixed frames, etc. They adopt cross flow, counter flow, or cross counter flow structures to ensure that the two airflows do not mix and to avoid the transfer of odors and moisture. This design improves the efficiency and reliability of heat exchange. When there is a temperature difference between two airflows, they will exchange heat through a heat-conducting plate. The hotter side transfers heat to the cooler side to achieve energy recovery. Plate heat exchangers adopt a modular structure, with low maintenance costs and easy use. According to different air flow channels, it can be divided into cross flow, counter flow, and cross counter flow types to meet different application requirements.
Plate heat exchangers are not only used in heat pump drying systems, but also widely used in various industries such as HVAC, communication, power, textile, automotive, food, medical, agriculture, animal husbandry, etc., for ventilation, energy recovery, cooling, preheating, dehumidification, and waste heat recovery.

Plate heat exchanger for drying linen in hotels and laundry industry

Application principle:
During the washing and drying process of linen, steam or hot water enters one side of the plate heat exchanger as a high-temperature fluid, while the air to be heated (for drying) enters the other side as a low-temperature fluid. Through a plate heat exchanger, the high-temperature fluid transfers heat to the low-temperature fluid, causing the air temperature to rise and achieving the purpose of preheating.
Plate heat exchangers have good thermal conductivity and can effectively transfer the heat of steam to linen, improving thermal efficiency. This means that the drying process of linen can be completed faster or energy consumption can be reduced with the same energy consumption.
Structural design: The plate heat exchanger is composed of multiple thin metal plates that form sealed channels between them. Metal plates are usually made of materials with good thermal conductivity, such as aluminum foil, copper foil, or stainless steel foil.
Energy saving and environmental protection: By recycling and reusing heat energy, plate heat exchangers can reduce steam consumption, lower energy consumption, and protect the environment. This is particularly important for places such as hotels, guesthouses, hospitals, and the laundry industry that require a large amount of washing and drying of linen.
The application principle of the plate heat exchange core of the linen washing and drying heat exchanger is based on the basic principles of heat conduction and convection, and efficient heat exchange is achieved through reasonable structural design and material selection.

Heat exchanger for sludge drying

Air heat exchangers play a crucial role in the low-temperature drying process of sludge. Based on the thermal conductivity and corrosion resistance of epoxy aluminum foil material, efficient low-temperature drying of sludge is achieved by optimizing the heat exchange process.


working principle:
It uses a heat pump system to cool and dehumidify the humid air from the drying chamber through an evaporator, while heating and reheating it through a condenser to produce dry hot air that is sent into the drying chamber.
Application effect:
Epoxy aluminum foil, as a material for heat exchangers, has efficient thermal conductivity that helps to quickly transfer heat and improve heat exchange efficiency. Meanwhile, due to its corrosion resistance, it can effectively resist the erosion of corrosive gases and substances that may be generated during the sludge drying process, extending the service life of the equipment.
The application principle of the low-temperature sludge dryer heat exchanger is mainly based on the thermal conductivity and corrosion resistance of epoxy aluminum foil material. By optimizing the heat exchange process, efficient low-temperature sludge drying can be achieved.

ko_KR한국어