태그 아카이브 폐열 회수

Waste heat recovery from spray painting exhaust gas

Spray coating is a surface treatment method that sprays plastic powder onto parts, widely used in various fields such as automotive, electronic products, furniture and appliances, construction industry, machinery, and public facilities. The waste heat recovery plate heat exchanger for spray coating waste gas is an energy recovery device that can recover and utilize the heat energy generated during the high-temperature baking process of spray coating.


working principle:
The plate heat exchanger for waste heat recovery from spray coating waste gas transfers the heat from the dry waste gas to other media, such as fresh air or water, to achieve energy recovery and utilization. The device consists of a series of parallel arranged metal plates, and the gas from the heat source and cold source flows cross between the plates, achieving heat transfer through thermal conduction and convective heat transfer of the metal plates.
Application areas:
Spray painted waste gas heat recovery plate heat exchangers are widely used in industries that require a large amount of thermal energy, such as metallurgy, chemical industry, building materials, machinery, electricity, etc. In these industries, the exhaust and smoke exhaust of various smelting furnaces, heating furnaces, internal combustion engines, and boilers, as well as the residual heat of flue gas from industrial kilns, are the main objects of waste heat recovery.
Product advantages:
Efficient heat transfer: The plate type gas waste heat recovery heat exchanger adopts an efficient plate design with a high total heat transfer film coefficient, which can quickly and effectively transfer heat.
Compact structure: The equipment occupies a small area, is lightweight, and has a large heat exchange area per unit volume, making it suitable for situations with limited space.
Safe and reliable: The equipment adopts a fully welded form, and the manufacturing process strictly follows the enterprise standards. Multiple pressure testing procedures ensure that the equipment can be used for a long time without leakage.
Energy saving and environmental protection: By using heat exchange to cool down the waste heat flue gas, the heat recycling system achieves the goal of energy saving, improves the economic efficiency of the enterprise, and reduces operating costs.
matters needing attention:
When selecting and using spray coating waste gas heat recovery plate heat exchangers, it is necessary to design and install them according to specific spray coating process parameters and requirements. It is important to ensure that the selection of the heat exchanger is appropriate, the material is heat-resistant, and appropriate control measures are taken to ensure the stability and safety of the heat exchange process.

건조 폐열 회수

히트펌프 건조열회수 시스템은 식품, 약재, 담배, 목재, 슬러지 등의 건조에 적용할 수 있습니다. 우수한 건조 품질과 높은 자동화 수준을 특징으로 하며 현대 건조 산업에서 에너지 절약, 친환경 및 환경 보호를 위한 최고의 제품이자 선호되는 제품입니다.

이 장치는 역 카르노 원리와 효율적인 열 회수 기술을 활용합니다. 전체 건조 및 제습 과정에서 건조실의 습한 공기는 환기 덕트를 통해 본체에 연결됩니다. 습한 공기의 현열과 잠열을 현열판 열회수장치를 이용하여 열회수 및 재사용함으로써 본체의 성능과 건조속도, 재질의 품질을 대폭 향상시킵니다.

배기가스 폐열 회수 계산 방법

배기가스로부터의 폐열 회수 가능성을 계산하는 두 가지 주요 접근 방식이 있습니다.

1. 열역학적 접근:

This method uses the principles of thermodynamics to determine the theoretical maximum amount of heat that can be recovered. Here's what you need to consider:

  • 질량유량(ṁ) of the exhaust gas (kg/s) - This can be obtained from engine specifications or measured with a flow meter.
  • 비열용량(Cp) of the exhaust gas (kJ/kg⋅K) - This value varies with temperature and needs to be obtained from tables or thermodynamic software for the specific gas composition of your exhaust.
  • 입구온도(T_in) of the exhaust gas (°C) - Measured with a temperature sensor.
  • 출구 온도(T_out) of the exhaust gas after heat recovery (°C) - This is the desired temperature after heat is removed for your chosen application (e.g., preheating combustion air, generating hot water).

열회수 잠재력(Q) 다음 공식을 사용하여 계산할 수 있습니다.

Q = ṁ * Cp * (T_in - T_out)

2. 단순화된 접근 방식:

이 방법은 대략적인 추정치를 제공하며 초기 평가에 사용하기가 더 쉽습니다. 이는 배기가스 에너지의 특정 비율이 회수될 수 있다고 가정합니다. 이 비율은 엔진 유형, 작동 조건 및 선택한 열 교환기 효율에 따라 달라질 수 있습니다.

예상 열 회수율(Q) 다음을 사용하여 계산할 수 있습니다.

Q = 배기가스 에너지 함량 * 회수율

배기가스 에너지 함량 다음과 같이 추정할 수 있습니다.

배기가스 에너지 함량 = 질량유량 * 연료의 저발열량(LHV)

낮은 발열량(LHV) 형성된 수증기가 응축될 때 연소 중에 방출되는 열의 양입니다(연료 사양에서 확인 가능).

회복 인자 일반적으로 엔진 유형, 작동 조건 및 선택한 열 교환기 효율에 따라 20%에서 50% 범위의 백분율입니다.

중요 사항:

  • 이러한 계산은 이론적 또는 추정값을 제공합니다. 실제 열 회수율은 열 교환기의 비효율성 및 배관 손실과 같은 요인으로 인해 더 낮을 수 있습니다.
  • 열역학적 접근 방식에서 선택한 출구 온도(T_out)는 열 교환기의 적용 및 제한 사항을 기반으로 현실적이어야 합니다.
  • 뜨거운 배기가스를 처리할 때는 안전 고려사항이 매우 중요합니다. 폐열 회수 시스템을 설계하고 구현하려면 항상 자격을 갖춘 엔지니어와 상담하십시오.

고려해야 할 추가 요소:

  • 응축: 배기가스 온도가 이슬점 이하로 떨어지면 수증기가 응축됩니다. 이는 추가적인 잠열을 방출할 수 있지만 적절한 응축수 관리가 필요합니다.
  • 파울링: 배기 가스에는 열 교환기 표면을 오염시켜 효율성을 저하시킬 수 있는 오염 물질이 포함될 수 있습니다. 정기적으로 청소하거나 적절한 재료를 선택해야 할 수도 있습니다.

이러한 방법과 요소를 이해함으로써 배기가스에서 폐열 회수 가능성을 계산하고 특정 응용 분야에 대한 타당성을 평가할 수 있습니다.

ko_KR한국어