태그 아카이브 공대공 간접 냉각 시스템

Indirect Cooling in Data Centers

Modern data centers are remarkably technologically complex, and keeping them running safely and efficiently requires continual close monitoring and management.

Maintaining the correct temperature is among the most important tasks faced by data center managers. Should the temperature and humidity rise to excessive levels inside the data center, condensation can start forming, damaging the machines within. This can cause massive damage and disruption, so it must be avoided at all costs. Fortunately, various technologies are on hand that can help keep data center temperatures at the right level.

There are numerous ways to cool a data center. Indirect air cooling uses external air, but by including an air-to-air heat exchanger, the outside air is kept in a separate loop, providing cooling without entering the server room.

Indirect cooling methods benefit by not contaminating the inside air with outdoor air pollutants and humidity. A heat exchanger keeps both airstreams separated while transferring the heat from the inside to the outside of the data center building. Consequently, the ambient and indoor air never mix.

Dry cooling is usually sufficient if the data center is located in a consistently low-temperature area, meaning no water is involved. However, by spraying water on the ambient air side of the heat exchanger, an evaporative effect is achieved, resulting in a lower indoor air temperature. This method is called indirect evaporative cooling (IEC).

Ideally suited for warm, dry climates, IEC provides excellent cooling potential with low operational- and first-cost. Ambient temperature reductions of 6-8 °C (10-15 °F) are typical in summer conditions. IEC provides up to 28% in energy savings compared to conventional free cooling and 52% to air-cooled Free Cooling alternatives.

Evaporative cooling requires a plate heat exchanger that balances high efficiency with low pressure drop, offers solid corrosion protection, and reliable water tightness. Cross-flow heat exchangers meet all these requirements while providing outstanding cooling capacity.

Our crossflow heat exchangers, especially with evaporative cooling technology, provide an efficient, low-cost, and environmentally friendly alternative to traditional cooling methods.

Indirect Cooling in Data Centers

풍력 발전기 공대공 간접 냉각 시스템

공업 전력 시스템 배경

풍력발전은 재생가능하고 무공해이며 에너지 규모가 크고 전망이 넓다는 특징을 지닌 일종의 청정에너지이다. 청정에너지 개발은 세계 모든 국가의 전략적 선택이다.

그러나 냉각을 위해 공기가 발전기 캐빈에 직접 공급되면 먼지와 부식성 가스가 캐빈으로 유입됩니다(특히 해상에 설치된 풍력 터빈).

간접 냉각 시스템 솔루션

간접 냉각 방식은 내부와 외부의 공기를 간접적으로 열교환시켜 외부의 먼지와 부식성 가스를 객실 내부로 유입시키지 않고 풍력 발전기 객실을 냉각시키는 효과를 얻을 수 있습니다.

간접 냉각 시스템의 주요 구성 요소는 BXB 판형 열 교환기입니다. BXB 판형 열교환기에서는 두 개의 채널이 알루미늄 호일로 분리되어 있습니다. 기내 공기는 폐쇄 순환이고 외부 공기는 개방 순환입니다. 두 공기가 열교환을 하고 있습니다. 객실 내 공기는 열을 외부 공기로 전달하여 풍력 발전기의 온도를 낮춥니다. 또한, 알루미늄 호일을 절연하여 객실 내외부의 공기가 섞이지 않게 하여, 객실 외부의 먼지나 부식성 가스가 객실 내부로 유입되는 것을 방지합니다.

냉각 효과 분석

Taking a 2MW unit as an example, the motor's heat generation is 70kW, The circulating air volume in the engine room is 7000m3/h and the temperature is 85℃. The outside circulating air volume is 14000m3/h and the temperature is 40℃. Through the BXB1000-1000 plate heat exchanger, the air temperature in the cabin can be reduced to 47℃ and the heat dissipation capacity can reach 72kW. The relevant parameters are as follows:

풍력 발전기 공대공 간접 냉각 시스템

Need Help?
ko_KR한국어