태그 아카이브 열회수

에틸렌글리콜 열 회수 환기 장치

An ethylene glycol heat recovery ventilation unit is an air handling device that uses ethylene glycol solution as a heat transfer medium to recover heat or cooling energy from exhaust air, improving the energy efficiency of air conditioning systems. It is widely used in places requiring strict separation of fresh and exhaust air, such as hospitals, laboratories, and industrial facilities.

Working Principle

The ethylene glycol heat recovery ventilation unit achieves energy recovery through a heat exchanger and ethylene glycol solution:

  1. Exhaust Side: The cooling or heating energy in the exhaust air is transferred to the ethylene glycol solution via a heat exchanger, altering the solution's temperature.
  2. Fresh Air Side: A circulation pump delivers the cooled or heated ethylene glycol solution to the fresh air side's heat exchanger, adjusting the fresh air temperature to reduce the operating load and energy consumption of the air conditioning system.
  3. Heat Recovery Efficiency: The heat recovery efficiency of the ethylene glycol solution can reach about 50%, depending on system design and operating conditions.

System Components

  • Fresh Air Side: Fresh air section, primary/medium efficiency filter section, ethylene glycol heat exchanger, and supply fan section.
  • Exhaust Side: Return air section, primary efficiency filter section, ethylene glycol heat exchanger, and exhaust fan section.

Applications

  • Suitable for scenarios requiring complete isolation of fresh and exhaust air, such as hospitals and cleanrooms.
  • Ideal for industrial or commercial buildings needing efficient energy recovery, such as factories and transportation facilities.

장점

  • High Energy Efficiency: Reduces air conditioning system energy consumption through heat recovery, lowering operating costs.
  • Flexibility: Adjusts fresh air temperature based on varying climate conditions, adapting to diverse environments.
  • Safety: Ethylene glycol solution prevents heat exchanger freezing in low-temperature environments.

Considerations

  • 유지: Regular checks on the ethylene glycol solution concentration and circulation pump operation are necessary.
  • Design Requirements: System design must consider the layout of fresh and exhaust air ducts to ensure efficient heat exchange and prevent cross-contamination.

건조 장비에서 가스-가스 열 회수 기술의 에너지 절감 성능

Gas-to-gas heat recovery technology significantly enhances the energy efficiency of drying equipment by recovering waste heat from hot exhaust gases and transferring it to the incoming cold air. This process reduces the energy demand for heating fresh air, thereby lowering fuel consumption and operating costs.

In drying systems, especially in industries like food processing, tobacco, paper, and sludge treatment, a large amount of thermal energy is typically lost through exhaust air. By integrating a gas-to-gas heat exchanger—commonly made from aluminum or stainless steel foil—this waste heat is captured and reused. The recovered energy can preheat the inlet air by 30–70%, depending on the system configuration and operating conditions.

Field applications have shown that the use of gas-to-gas heat recovery systems can reduce energy consumption by 15% to 35%, shorten drying cycles, and improve overall system efficiency. Additionally, it contributes to lower carbon emissions and better thermal control, making it a sustainable and cost-effective solution for modern drying processes.

Heat Recovery Fresh Air Unit

The heat recovery fresh air unit is an energy-efficient ventilation system that introduces fresh outdoor air while recovering heat from the exhaust air. It uses a heat exchanger—typically a plate-type or rotary wheel exchanger—to transfer thermal energy between incoming and outgoing airstreams without mixing them, significantly reducing heating or cooling loads.

Constructed with high-efficiency filters, fans, and a heat exchanger core (commonly aluminum or enthalpy material), the system ensures a continuous supply of fresh air while maintaining indoor temperature stability and improving air quality. It helps reduce energy consumption, enhance indoor comfort, and comply with modern building energy-saving standards.

These units are ideal for applications in offices, factories, schools, hospitals, and other facilities requiring reliable ventilation and temperature control with reduced operating costs.

산업용 환기 열 회수 시스템 소개

Industrial ventilation heat recovery systems are designed to improve energy efficiency in industrial facilities by recovering waste heat from exhaust air and transferring it to incoming fresh air. These systems reduce energy consumption, lower operating costs, and contribute to environmental sustainability by minimizing heat loss.

Key Components

  1. Heat Exchanger: The core component where heat transfer occurs. Common types include:
    • 판형 열교환기: Use metal plates to transfer heat between air streams.
    • Rotary Heat Exchangers: Use a rotating wheel to transfer heat and, in some cases, moisture.
    • Heat Pipes: Utilize sealed tubes with a working fluid for efficient heat transfer.
    • Run-Around Coils: Use a fluid loop to transfer heat between air streams.
  2. Ventilation System: Includes fans, ducts, and filters to manage airflow.
  3. Control System: Monitors and regulates temperature, airflow, and system performance to optimize efficiency.
  4. Bypass Mechanisms: Allow the system to bypass heat recovery during conditions where it’s unnecessary (e.g., summer cooling).

Working Principle

  • 배기 공기: Warm air from industrial processes (e.g., manufacturing, drying) is extracted.
  • 열전달: The heat exchanger captures thermal energy from the exhaust air and transfers it to the cooler incoming fresh air without mixing the two air streams.
  • Supply Air: The preheated fresh air is distributed into the facility, reducing the need for additional heating.
  • Energy Savings: By recovering 50-80% of waste heat (depending on the system), the demand on heating systems like boilers or furnaces is significantly reduced.

Types of Systems

  1. Air-to-Air Heat Recovery: Directly transfers heat between exhaust and supply air streams.
  2. Air-to-Water Heat Recovery: Transfers heat to a liquid medium (e.g., water) for use in heating systems or processes.
  3. Combined Systems: Integrate heat recovery with other processes, such as humidity control or cooling.

Benefits

  • 에너지 효율: Reduces energy consumption for heating, often by 20-50%.
  • Cost Savings: Lowers utility bills and operational costs.
  • 환경 영향: Decreases greenhouse gas emissions by reducing reliance on fossil fuels.
  • Improved Indoor Air Quality: Ensures proper ventilation while maintaining thermal comfort.
  • Compliance: Helps meet energy efficiency and environmental regulations.

Applications

  • Manufacturing plants (e.g., chemical, food processing, textiles)
  • Warehouses and distribution centers
  • 데이터 센터
  • Pharmaceutical and cleanroom facilities
  • Commercial buildings with high ventilation demands

도전 과제

  • 초기 비용: High upfront investment for installation.
  • 유지: Regular cleaning of heat exchangers and filters is required to maintain efficiency.
  • System Design: Must be tailored to specific industrial processes and climates.
  • Space Requirements: Large systems may need significant installation space.

Trends and Innovations

  • Integration with IoT for real-time monitoring and optimization.
  • Advanced materials for heat exchangers to improve efficiency and durability.
  • Hybrid systems combining heat recovery with renewable energy sources (e.g., solar or geothermal).
  • Modular designs for easier installation and scalability.

Industrial ventilation heat recovery systems are a critical solution for energy-intensive industries, offering a balance of economic and environmental benefits while ensuring efficient and sustainable operations.

분무 건조 열 회수에서 공기 대 공기 열교환기는 어떻게 작동합니까?

~ 안에 분무 건조 열 회수, 그리고 공기 대 공기 열 교환기 건조실에서 나오는 뜨겁고 습한 배기 공기의 폐열을 회수하여 유입되는 신선하지만 차가운 공기에 전달하는 데 사용됩니다. 이를 통해 건조 공정의 에너지 소비량을 크게 줄일 수 있습니다.

작동 원리:

  1. 배기 공기 수집:

    • 분무 건조 후, 뜨거운 배출 공기(대개 80~120°C)에는 열과 수증기가 모두 포함되어 있습니다.

    • 이 공기는 챔버에서 끌어내져 열교환기로 보내집니다.

  2. 열교환 과정:

    • 뜨거운 배출 공기는 열교환기의 한쪽으로 흐릅니다(점착성이나 약한 산성 때문에 부식 방지 재료로 만들어지는 경우가 많음).

    • 동시에 차가운 주변 공기는 반대쪽으로 별도의 채널(역류 또는 교차류 설정)을 통해 흐릅니다.

    • 열이 전달됩니다 교환기 벽을 통해 뜨거운 쪽에서 차가운 쪽으로, 섞지 않고 공기의 흐름.

  3. 유입 공기 예열:

    • 유입되는 신선한 공기는 분무 건조기의 주 히터(가스 버너 또는 증기 코일)에 들어가기 전에 예열됩니다.

    • 이것 필요한 연료나 에너지를 낮춥니다 원하는 건조 온도(일반적으로 입구에서 150~250°C)에 도달합니다.

  4. 배기 공기 후처리(선택 사항):

    • 열을 추출한 후, 더 차가운 배출 공기는 방출되거나 더 이상 사용되기 전에 먼지와 습기를 걸러내거나 처리할 수 있습니다.

이익:

  • 에너지 절약: 설정에 따라 연료 또는 증기 소비를 10–30%만큼 줄입니다.

  • 운영 비용 절감: 에너지 투입이 줄어들면 공공 서비스 비용이 감소합니다.

  • 환경 영향: 에너지 효율성을 개선하여 CO₂ 배출량을 줄입니다.

  • 온도 안정성: 일관된 건조 성능을 유지하는 데 도움이 됩니다.

NMP 열 회수에서 공기 대 공기 열교환기는 어떻게 작동합니까?

NMP 열 회수에서 공기 대 공기 열교환기는 산업 공정에서 나오는 뜨겁고 NMP가 함유된 배기 공기 흐름과 더 차가운 유입 신선 공기 흐름 사이에서 열 에너지를 전달하여 배터리 제조와 같은 산업에서 에너지 효율을 개선합니다.

뜨거운 배기 공기(예: 80~160°C)와 차가운 신선 공기는 혼합되지 않고 별도의 통로나 열전도성 표면(예: 판, 튜브 또는 회전 휠)을 통과합니다. 뜨거운 배기 공기에서 차가운 신선 공기로의 열 전달은 현열 전달을 통해 이루어집니다. 일반적인 열교환기 유형으로는 판형 열교환기, 회전형 열교환기, 히트파이프 열교환기가 있습니다.

NMP 전용 설계는 스테인리스 스틸이나 유리 섬유 강화 플라스틱과 같은 내식성 소재를 사용하여 NMP의 공격적인 특성을 견뎌냅니다. 더 넓은 핀 간격이나 CIP(Clean-in-Place) 시스템은 먼지나 잔여물로 인한 오염을 방지합니다. 응축수는 막힘이나 부식을 방지하기 위해 관리됩니다.

뜨거운 배기 공기는 신선한 공기에 열을 전달하여 공기를 예열(예: 20°C에서 60~80°C로)하고 후속 공정의 에너지 소비를 줄입니다. 냉각된 배기 공기(예: 30~50°C)는 NMP 회수 시스템(예: 응축 또는 흡착)으로 보내져 용매를 포집하고 재활용합니다. 열 회수 효율은 설계에 따라 60~95%입니다.

이를 통해 에너지 소비를 15–30%만큼 줄이고, 온실가스 배출량을 줄이며, 배기 공기를 냉각하여 용매 포집을 용이하게 하여 NMP 회수율을 향상시킵니다. 파울링과 같은 문제는 더 넓은 틈새, 추출 가능한 요소 또는 세척 시스템을 통해 해결되며, 견고한 밀봉은 교차 오염을 방지합니다.

배터리 제조 공장에서 판형 열교환기는 120°C의 배기 공기를 이용하여 신선한 공기를 20°C에서 90°C로 예열하여 오븐 에너지 수요를 약 70%만큼 절감합니다. 냉각된 배기 공기는 처리되어 95%의 NMP를 회수합니다.

열 회수 휠 공기 처리 장치

에이 heat recovery wheel in an air handling unit (AHU) is a device that improves energy efficiency by transferring heat and sometimes moisture between incoming fresh air and outgoing exhaust air. Here's a concise explanation:

작동 원리

  • Structure: The heat recovery wheel, also called a rotary heat exchanger, thermal wheel, or enthalpy wheel, is a rotating cylindrical matrix typically made of aluminum or a polymer, often coated with a desiccant (e.g., silica gel) for moisture transfer. It has a honeycomb structure to maximize surface area.
  • Operation: Positioned between the supply and exhaust air streams in an AHU, the wheel rotates slowly (10-20 RPM). As it turns, it captures heat from the warmer air stream (e.g., exhaust air in winter) and transfers it to the cooler air stream (e.g., incoming fresh air). In summer, it can pre-cool incoming air.
  • Types:

    • Sensible Heat Wheel: Transfers only heat, affecting air temperature without changing moisture content.
    • Enthalpy Wheel: Transfers both heat (sensible) and moisture (latent), using a desiccant to adsorb and release water vapor based on humidity differences. This is more effective for total energy recovery.

  • Efficiency: Sensible heat recovery can achieve up to 85% efficiency, while enthalpy wheels may add 10-15% more by recovering latent heat.

Benefits

  • Energy Savings: Pre-conditions incoming air, reducing heating or cooling loads, especially in climates with large indoor-outdoor temperature differences.
  • Improved Air Quality: Supplies fresh air while recovering energy from exhaust air, maintaining indoor comfort.
  • Applications: Common in commercial buildings, hospitals, schools, and gyms where high ventilation rates are needed.

Key Considerations

  • 유지: Regular cleaning is critical to prevent dirt or clogs from reducing efficiency. Filters should be replaced, and the wheel inspected for buildup.
  • Leakage: Slight cross-contamination between air streams is possible (Exhaust Air Transit Ratio <1% in well-maintained systems). Overpressure on the supply side minimizes this risk.
  • Frost Prevention: In cold climates, wheel frosting can occur. Systems use variable speed control (via VFD), preheating, or stop/jogging to prevent this.
  • Bypass Dampers: Allow the wheel to be bypassed when heat recovery isn’t needed (e.g., during mild weather), saving fan energy and extending wheel life.

Example

In a hospital AHU, a heat recovery wheel might pre-heat incoming winter air (e.g., from 0°C to 15°C) using exhaust air (e.g., 24°C), reducing the heating system’s workload. In summer, it could pre-cool incoming air (e.g., from 35°C to 25°C) using cooler exhaust air.

Limitations

  • Space: Wheels are large, often the biggest AHU component, requiring careful installation planning.
  • Cross-Contamination: Not ideal for applications requiring complete air stream separation (e.g., labs), though modern designs minimize this.
  • Cost: Initial cost is high, but energy savings often justify it in high-ventilation settings.

ZiBo QiYu 제조업체

ZIBO QIYU AIR CONDITION ENERGY RECOVERY EQUIPMENT CO., LTD. We have kinds of air to air heat exchangers, such as AHU, HRV, heat tube heat exchangers, rotary heat exchangers, steam heating coil, surface air cooler.

All these products can be customized, you just need to tell me your requirements, and we have professional model selection software, we can help you choose the most suitable model.

If you're interested in our products, you can look through our website to get further information.

Website:https://www.huanrexi.com

Application of Air-to-Air Heat Recovery Exchanger in Livestock Ventilation

그만큼 Air-to-Air Heat Recovery Exchanger plays a vital role in the livestock ventilation industry by enhancing energy efficiency and maintaining optimal indoor conditions. Designed to recover waste heat from exhaust air, this exchanger transfers thermal energy from the warm, stale air expelled from livestock facilities to the incoming fresh, cooler air without mixing the two streams. In poultry houses, pig barns, and other breeding environments, where consistent temperature control and air quality are critical, it reduces heating costs in winter by pre-warming fresh air and mitigates heat stress in summer through effective thermal regulation. Typically constructed with corrosion-resistant materials like aluminum or stainless steel, it withstands the humid and ammonia-rich conditions common in livestock settings. By integrating into ventilation systems, the exchanger not only lowers energy consumption but also supports sustainable farming practices, ensuring animal welfare and operational efficiency. Its application is particularly valuable in large-scale breeding operations aiming to balance cost-effectiveness with environmental responsibility.

Air-to-Air Heat Recovery Exchanger

국화 및 인동덩굴 건조용 열교환기 열회수 장비

작동 원리:
국화와 인동덩굴 건조 과정에서 발생하는 고온의 습기(배기)는 열교환 코어를 통해 시스템으로 유입되는 신선한 공기로 전달됩니다. 이렇게 하면 신선한 공기가 건조 구역으로 유입되기 전에 예열되어 신선한 공기를 가열하는 데 필요한 에너지 소비를 줄일 수 있습니다.
구조적 특징:
고품질 친수성 알루미늄 호일은 일반적으로 열전달 도체로 사용되며 열전달 효율이 좋고 수명이 길다(일반적으로 최대 8~10년)
신선한 공기와 배출 공기를 위한 통로는 알루미늄 호일로 분리된 십자형 패턴으로 배열되어 신선한 공기의 청결을 보장하고 냄새와 습기가 전달되는 것을 방지합니다.
모든 연결 부분은 실런트로 밀봉하고, 바이팅 에지 플로우 접착제로 처리하여 열교환기의 기밀성을 보장합니다.
성능상의 이점:
열교환 효율은 90%만큼 높아 에너지 소비를 크게 줄일 수 있습니다.
구조가 컴팩트하고 부피가 작아 다양한 경우에 설치 및 사용에 적합합니다.
유지관리가 쉽고, 청소가 간편하며, 수돗물이나 중성세제로 직접 청소할 수 있습니다.

도움이 필요하신가요?
ko_KR한국어