태그 아카이브 열회수

Ethylene Glycol Heat Recovery Ventilation Unit

An ethylene glycol heat recovery ventilation unit is an air handling device that uses ethylene glycol solution as a heat transfer medium to recover heat or cooling energy from exhaust air, improving the energy efficiency of air conditioning systems. It is widely used in places requiring strict separation of fresh and exhaust air, such as hospitals, laboratories, and industrial facilities.

Working Principle

The ethylene glycol heat recovery ventilation unit achieves energy recovery through a heat exchanger and ethylene glycol solution:

  1. Exhaust Side: The cooling or heating energy in the exhaust air is transferred to the ethylene glycol solution via a heat exchanger, altering the solution's temperature.
  2. Fresh Air Side: A circulation pump delivers the cooled or heated ethylene glycol solution to the fresh air side's heat exchanger, adjusting the fresh air temperature to reduce the operating load and energy consumption of the air conditioning system.
  3. Heat Recovery Efficiency: The heat recovery efficiency of the ethylene glycol solution can reach about 50%, depending on system design and operating conditions.

System Components

  • Fresh Air Side: Fresh air section, primary/medium efficiency filter section, ethylene glycol heat exchanger, and supply fan section.
  • Exhaust Side: Return air section, primary efficiency filter section, ethylene glycol heat exchanger, and exhaust fan section.

Applications

  • Suitable for scenarios requiring complete isolation of fresh and exhaust air, such as hospitals and cleanrooms.
  • Ideal for industrial or commercial buildings needing efficient energy recovery, such as factories and transportation facilities.

장점

  • High Energy Efficiency: Reduces air conditioning system energy consumption through heat recovery, lowering operating costs.
  • Flexibility: Adjusts fresh air temperature based on varying climate conditions, adapting to diverse environments.
  • Safety: Ethylene glycol solution prevents heat exchanger freezing in low-temperature environments.

Considerations

  • Maintenance: Regular checks on the ethylene glycol solution concentration and circulation pump operation are necessary.
  • Design Requirements: System design must consider the layout of fresh and exhaust air ducts to ensure efficient heat exchange and prevent cross-contamination.

Energy-Saving Performance of Gas-to-Gas Heat Recovery Technology in Drying Equipment

Gas-to-gas heat recovery technology significantly enhances the energy efficiency of drying equipment by recovering waste heat from hot exhaust gases and transferring it to the incoming cold air. This process reduces the energy demand for heating fresh air, thereby lowering fuel consumption and operating costs.

In drying systems, especially in industries like food processing, tobacco, paper, and sludge treatment, a large amount of thermal energy is typically lost through exhaust air. By integrating a gas-to-gas heat exchanger—commonly made from aluminum or stainless steel foil—this waste heat is captured and reused. The recovered energy can preheat the inlet air by 30–70%, depending on the system configuration and operating conditions.

Field applications have shown that the use of gas-to-gas heat recovery systems can reduce energy consumption by 15% to 35%, shorten drying cycles, and improve overall system efficiency. Additionally, it contributes to lower carbon emissions and better thermal control, making it a sustainable and cost-effective solution for modern drying processes.

Heat Recovery Fresh Air Unit

The heat recovery fresh air unit is an energy-efficient ventilation system that introduces fresh outdoor air while recovering heat from the exhaust air. It uses a heat exchanger—typically a plate-type or rotary wheel exchanger—to transfer thermal energy between incoming and outgoing airstreams without mixing them, significantly reducing heating or cooling loads.

Constructed with high-efficiency filters, fans, and a heat exchanger core (commonly aluminum or enthalpy material), the system ensures a continuous supply of fresh air while maintaining indoor temperature stability and improving air quality. It helps reduce energy consumption, enhance indoor comfort, and comply with modern building energy-saving standards.

These units are ideal for applications in offices, factories, schools, hospitals, and other facilities requiring reliable ventilation and temperature control with reduced operating costs.

Introduction to Industrial Ventilation Heat Recovery Systems

Industrial ventilation heat recovery systems are designed to improve energy efficiency in industrial facilities by recovering waste heat from exhaust air and transferring it to incoming fresh air. These systems reduce energy consumption, lower operating costs, and contribute to environmental sustainability by minimizing heat loss.

Key Components

  1. Heat Exchanger: The core component where heat transfer occurs. Common types include:
    • Plate Heat Exchangers: Use metal plates to transfer heat between air streams.
    • Rotary Heat Exchangers: Use a rotating wheel to transfer heat and, in some cases, moisture.
    • Heat Pipes: Utilize sealed tubes with a working fluid for efficient heat transfer.
    • Run-Around Coils: Use a fluid loop to transfer heat between air streams.
  2. Ventilation System: Includes fans, ducts, and filters to manage airflow.
  3. Control System: Monitors and regulates temperature, airflow, and system performance to optimize efficiency.
  4. Bypass Mechanisms: Allow the system to bypass heat recovery during conditions where it’s unnecessary (e.g., summer cooling).

Working Principle

  • Exhaust Air: Warm air from industrial processes (e.g., manufacturing, drying) is extracted.
  • Heat Transfer: The heat exchanger captures thermal energy from the exhaust air and transfers it to the cooler incoming fresh air without mixing the two air streams.
  • Supply Air: The preheated fresh air is distributed into the facility, reducing the need for additional heating.
  • Energy Savings: By recovering 50-80% of waste heat (depending on the system), the demand on heating systems like boilers or furnaces is significantly reduced.

Types of Systems

  1. Air-to-Air Heat Recovery: Directly transfers heat between exhaust and supply air streams.
  2. Air-to-Water Heat Recovery: Transfers heat to a liquid medium (e.g., water) for use in heating systems or processes.
  3. Combined Systems: Integrate heat recovery with other processes, such as humidity control or cooling.

Benefits

  • Energy Efficiency: Reduces energy consumption for heating, often by 20-50%.
  • Cost Savings: Lowers utility bills and operational costs.
  • Environmental Impact: Decreases greenhouse gas emissions by reducing reliance on fossil fuels.
  • Improved Indoor Air Quality: Ensures proper ventilation while maintaining thermal comfort.
  • Compliance: Helps meet energy efficiency and environmental regulations.

Applications

  • Manufacturing plants (e.g., chemical, food processing, textiles)
  • Warehouses and distribution centers
  • 데이터 센터
  • Pharmaceutical and cleanroom facilities
  • Commercial buildings with high ventilation demands

Challenges

  • Initial Cost: High upfront investment for installation.
  • Maintenance: Regular cleaning of heat exchangers and filters is required to maintain efficiency.
  • System Design: Must be tailored to specific industrial processes and climates.
  • Space Requirements: Large systems may need significant installation space.

Trends and Innovations

  • Integration with IoT for real-time monitoring and optimization.
  • Advanced materials for heat exchangers to improve efficiency and durability.
  • Hybrid systems combining heat recovery with renewable energy sources (e.g., solar or geothermal).
  • Modular designs for easier installation and scalability.

Industrial ventilation heat recovery systems are a critical solution for energy-intensive industries, offering a balance of economic and environmental benefits while ensuring efficient and sustainable operations.

how does air to air heat exchanger work in Spray drying heat recovery

In spray drying heat recovery, an 공기 대 공기 열 교환기 is used to recover waste heat from the hot, moist exhaust air leaving the drying chamber and transfer it to the incoming fresh (but cooler) air. This reduces the energy demand of the drying process significantly.

How It Works:

  1. Exhaust Air Collection:

    • After spray drying, hot exhaust air (often 80–120°C) contains both heat and water vapor.

    • This air is pulled out of the chamber and sent to the heat exchanger.

  2. Heat Exchange Process:

    • The hot exhaust air flows through one side of the heat exchanger (often made of corrosion-resistant materials due to possible stickiness or mild acidity).

    • At the same time, cool ambient air flows through the other side, in a separate channel (counter-flow or cross-flow setup).

    • Heat is transferred through the exchanger walls from the hot side to the cool side, without mixing the air streams.

  3. Preheating Incoming Air:

    • The incoming fresh air gets preheated before entering the spray dryer’s main heater (gas burner or steam coil).

    • This lowers the fuel or energy required to reach the desired drying temperature (typically 150–250°C at the inlet).

  4. Exhaust Air Post-Treatment (optional):

    • After heat extraction, the cooler exhaust air can be filtered or treated for dust and moisture before being released or further used.

Benefits:

  • Energy Savings: Cuts down fuel or steam consumption by 10–30% depending on setup.

  • Lower Operating Costs: Less energy input reduces utility expenses.

  • Environmental Impact: Reduces CO₂ emissions by improving energy efficiency.

  • Temperature Stability: Helps maintain consistent drying performance.

how does air to air heat exchanger work in nmp heat recovery

An air-to-air heat exchanger in NMP heat recovery transfers thermal energy between a hot, NMP-laden exhaust air stream from an industrial process and a cooler incoming fresh air stream, improving energy efficiency in industries like battery manufacturing.

The hot exhaust air (e.g., 80–160°C) and cooler fresh air pass through separate channels or over a heat-conductive surface (e.g., plates, tubes, or a rotary wheel) without mixing. Heat transfers from the hot exhaust to the cooler fresh air via sensible heat transfer. Common types include plate heat exchangers, rotary heat exchangers, and heat pipe heat exchangers.

NMP-specific designs use corrosion-resistant materials like stainless steel or glass fiber-reinforced plastic to withstand NMP’s aggressive nature. Larger fin spacing or clean-in-place systems prevent fouling from dust or residues. Condensation is managed to avoid blockages or corrosion.

The hot exhaust air transfers heat to the fresh air, preheating it (e.g., from 20°C to 60–80°C) and reducing energy needs for subsequent processes. The cooled exhaust air (e.g., 30–50°C) is sent to an NMP recovery system (e.g., condensation or adsorption) to capture and recycle the solvent. Heat recovery efficiency is 60–95%, depending on the design.

This reduces energy consumption by 15–30%, lowers greenhouse gas emissions, and improves NMP recovery by cooling the exhaust air for easier solvent capture. Challenges like fouling are addressed with wider gaps, extractable elements, or cleaning systems, while robust sealing prevents cross-contamination.

In a battery manufacturing plant, a plate heat exchanger preheats fresh air from 20°C to 90°C using 120°C exhaust air, reducing oven energy demand by ~70%. The cooled exhaust air is processed to recover 95% of NMP.

heat recovery wheel air handling unit

A heat recovery wheel in an air handling unit (AHU) is a device that improves energy efficiency by transferring heat and sometimes moisture between incoming fresh air and outgoing exhaust air. Here's a concise explanation:

How It Works

  • Structure: The heat recovery wheel, also called a rotary heat exchanger, thermal wheel, or enthalpy wheel, is a rotating cylindrical matrix typically made of aluminum or a polymer, often coated with a desiccant (e.g., silica gel) for moisture transfer. It has a honeycomb structure to maximize surface area.
  • Operation: Positioned between the supply and exhaust air streams in an AHU, the wheel rotates slowly (10-20 RPM). As it turns, it captures heat from the warmer air stream (e.g., exhaust air in winter) and transfers it to the cooler air stream (e.g., incoming fresh air). In summer, it can pre-cool incoming air.
  • Types:

    • Sensible Heat Wheel: Transfers only heat, affecting air temperature without changing moisture content.
    • Enthalpy Wheel: Transfers both heat (sensible) and moisture (latent), using a desiccant to adsorb and release water vapor based on humidity differences. This is more effective for total energy recovery.

  • Efficiency: Sensible heat recovery can achieve up to 85% efficiency, while enthalpy wheels may add 10-15% more by recovering latent heat.

Benefits

  • Energy Savings: Pre-conditions incoming air, reducing heating or cooling loads, especially in climates with large indoor-outdoor temperature differences.
  • Improved Air Quality: Supplies fresh air while recovering energy from exhaust air, maintaining indoor comfort.
  • Applications: Common in commercial buildings, hospitals, schools, and gyms where high ventilation rates are needed.

Key Considerations

  • Maintenance: Regular cleaning is critical to prevent dirt or clogs from reducing efficiency. Filters should be replaced, and the wheel inspected for buildup.
  • Leakage: Slight cross-contamination between air streams is possible (Exhaust Air Transit Ratio <1% in well-maintained systems). Overpressure on the supply side minimizes this risk.
  • Frost Prevention: In cold climates, wheel frosting can occur. Systems use variable speed control (via VFD), preheating, or stop/jogging to prevent this.
  • Bypass Dampers: Allow the wheel to be bypassed when heat recovery isn’t needed (e.g., during mild weather), saving fan energy and extending wheel life.

Example

In a hospital AHU, a heat recovery wheel might pre-heat incoming winter air (e.g., from 0°C to 15°C) using exhaust air (e.g., 24°C), reducing the heating system’s workload. In summer, it could pre-cool incoming air (e.g., from 35°C to 25°C) using cooler exhaust air.

Limitations

  • Space: Wheels are large, often the biggest AHU component, requiring careful installation planning.
  • Cross-Contamination: Not ideal for applications requiring complete air stream separation (e.g., labs), though modern designs minimize this.
  • Cost: Initial cost is high, but energy savings often justify it in high-ventilation settings.

ZiBo QiYu manufacturer

ZIBO QIYU AIR CONDITION ENERGY RECOVERY EQUIPMENT CO., LTD. We have kinds of air to air heat exchangers, such as AHU, HRV, heat tube heat exchangers, rotary heat exchangers, steam heating coil, surface air cooler.

All these products can be customized, you just need to tell me your requirements, and we have professional model selection software, we can help you choose the most suitable model.

If you're interested in our products, you can look through our website to get further information.

Website:https://www.huanrexi.com

Application of Air-to-Air Heat Recovery Exchanger in Livestock Ventilation

The Air-to-Air Heat Recovery Exchanger plays a vital role in the livestock ventilation industry by enhancing energy efficiency and maintaining optimal indoor conditions. Designed to recover waste heat from exhaust air, this exchanger transfers thermal energy from the warm, stale air expelled from livestock facilities to the incoming fresh, cooler air without mixing the two streams. In poultry houses, pig barns, and other breeding environments, where consistent temperature control and air quality are critical, it reduces heating costs in winter by pre-warming fresh air and mitigates heat stress in summer through effective thermal regulation. Typically constructed with corrosion-resistant materials like aluminum or stainless steel, it withstands the humid and ammonia-rich conditions common in livestock settings. By integrating into ventilation systems, the exchanger not only lowers energy consumption but also supports sustainable farming practices, ensuring animal welfare and operational efficiency. Its application is particularly valuable in large-scale breeding operations aiming to balance cost-effectiveness with environmental responsibility.

Air-to-Air Heat Recovery Exchanger

Heat exchanger heat recovery equipment for drying chrysanthemums and honeysuckle

working principle:
During the drying process of chrysanthemums and honeysuckle, the high-temperature moisture (exhaust) generated is transferred to the fresh air entering the system through the heat exchange core. In this way, the fresh air is preheated before entering the drying area, thereby reducing the energy consumption required to heat the fresh air.
Structural features:
High quality hydrophilic aluminum foil is usually used as a heat transfer conductor, which has good heat transfer efficiency and a long service life (generally up to 8-10 years)
The channels for fresh air and exhaust air are arranged in a cross pattern, separated by aluminum foil to ensure the cleanliness of the fresh air and avoid the transmission of any odors and moisture.
All connections are sealed with sealant and treated with biting edge flow adhesive to ensure the airtightness of the heat exchanger.
Performance advantages:
The heat exchange efficiency is as high as 90%, which can significantly reduce energy consumption.
Compact structure, small volume, suitable for installation and use in various occasions.
Easy to maintain, easy to clean, can be directly cleaned with tap water or neutral detergent.

Need Help?
ko_KR한국어