태그 아카이브 폐열 회수

산업폐열회수의 형태는 무엇입니까?

산업폐가스 열 회수의 형태는 다음과 같습니다.

  1. 열교환기 회수: 열교환기(예: 플레이트, 튜브 또는 핀형)를 사용하여 폐기가스로부터 열을 차가운 유체(예: 물이나 공기)로 전달하여 공정 매체를 가열하거나 증기를 생성합니다.
  2. 증기 발생기: 폐열을 활용하여 증기 발생기를 구동하고 산업 공정이나 난방을 위한 증기를 생산합니다.
  3. 히트파이프 기술: 열파이프 열교환기를 사용하여 폐열을 효율적으로 회수하며, 중·저온 열 회수에 자주 사용됩니다.
  4. 유기 랭킨 사이클(ORC): 폐열을 이용해 ORC 시스템을 구동하고, 열을 전기로 변환하며, 중저온 난방에 적합합니다.
  5. 히트 펌프 시스템: 열펌프를 이용해 저급 폐열을 더 높은 온도로 업그레이드하여 난방이나 공정에 필요한 열을 생성합니다.
  6. 직접 활용: 연소 공기 예열이나 재료 건조와 같이 원료, 공기 또는 연료를 예열하기 위해 폐열을 직접 사용합니다.
  7. 열병합 발전(CHP): 발전과 난방 모두에 폐열을 통합하여 전반적인 에너지 효율을 개선합니다.
  8. 열 저장 회수: 나중에 사용하기 위해 열 저장 재료(예: 세라믹이나 금속)에 폐열을 저장합니다.

산업용 건조기용 폐열 회수 시스템

산업용 건조기용 폐열 회수 시스템은 고온의 배기가스나 기류에서 열에너지를 포집하고 재활용하여 에너지 효율을 높이고 운영 비용을 절감하며 배출량을 줄입니다. 이러한 시스템은 화학, 식품, 세라믹, 섬유 산업과 같은 에너지 집약적인 건조 공정에 매우 유용합니다. 아래에서 주요 기술, 이점, 그리고 미국 공급업체와 연락처 정보를 간략하게 소개합니다.

산업용 건조기 폐열 회수를 위한 핵심 기술
산업용 건조기는 현열과 잠열을 포함한 뜨겁고 습한 배기 공기를 생성합니다. 회수 시스템은 이 열을 추출하여 재사용합니다. 일반적인 기술은 다음과 같습니다.

공기 대 공기 열교환기:
뜨거운 배기 공기의 열을 판형 또는 회전형 열교환기를 통해 유입되는 신선한 공기로 전달합니다. 폴리머 공기 예열기는 부식과 오염에 강합니다.
용도: 건조기 유입 공기 예열, 연료 소비를 최대 20%까지 절감.
장점: 간단하고, 비용 효율적이며, 유지관리 비용이 낮습니다.
공기-액체 열교환기:
배출되는 열을 포착하여 공정 가열이나 시설 HVAC를 위한 따뜻한 액체로 사용합니다.
용도: 식품 가공 공장에서 공정수를 가열합니다.
장점: 다양한 용도로 열을 재사용할 수 있습니다.
히트 펌프:
저온 폐열을 재사용을 위해 고온으로 업그레이드합니다.
응용 분야: 화학 또는 유제품 산업에서 건조기 공기를 예열하기 위한 열을 끌어올리는 데 사용됩니다.
장점: 저온원에 대한 효율성이 높습니다.
직접 접촉 열교환기:
뜨거운 배기가스는 액체와 직접 접촉하여 열을 전달하며, 종종 배기가스 오염물질을 제거합니다.
응용 분야: 가마, 오븐 또는 건조기에서 열을 회수합니다.
장점: 열을 회수하는 동시에 배기가스를 청소합니다.
폐열 보일러:
고온 배기가스를 공정이나 발전에 사용할 수 있는 증기로 변환합니다.
응용 분야: 세라믹이나 광물 가공 분야의 고온 건조기.
장점: 증기나 전기를 생산합니다.
건조기 폐열 회수의 이점
에너지 절감: 최대 20%의 효율성 향상.
CO2 감소: 효율성이 1% 증가할 때마다 CO2 배출량이 1% 감소합니다.
비용 절감: 투자 회수 기간이 몇 개월에서 3년까지 가능합니다.
환경 규정 준수: 배출량과 폐열 방출을 줄입니다.
공정 최적화: 안정적인 온도는 제품 품질을 향상시킵니다.
과제와 해결책
오염 및 부식: 폴리머 열교환기나 인라인 세척 시스템을 사용하면 문제가 완화됩니다.
방열판 가용성: 경제적 통합을 위해 인근에서 열을 사용해야 합니다.
시스템 설계: 맞춤형 엔지니어링으로 호환성을 보장합니다.

산업용 열 회수 상자, 폐가스 및 열 회수, 가스-가스 열교환기

산업용 열 회수 장치는 다양한 산업 분야에서 폐가스 흐름으로부터 열을 회수하도록 설계된 작고 효율적인 시스템입니다. 가스-가스 열교환기를 사용하여 두 기류를 혼합하지 않고 고온의 배기 가스에서 유입되는 신선한 공기로 열에너지를 전달합니다. 이 공정은 추가 가열 필요성을 줄여 에너지 효율을 크게 향상시키고, 운영 비용과 환경 영향을 줄입니다.

알루미늄이나 스테인리스 스틸과 같은 내구성 있는 소재로 제작된 이 시스템은 고온 및 부식성 환경을 견딜 수 있습니다. 내부 열교환기는 주로 알루미늄 호일이나 판으로 제작되어 높은 열전도도와 효율적인 열 전달을 보장합니다. 이러한 설계는 오염된 배기 공기와 깨끗한 공급 공기 간의 교차 오염을 방지하여 식품 가공, 담배, 인쇄, 화학, 슬러지 처리 등의 산업에 적합합니다.

이 에너지 절약 솔루션은 폐열을 회수할 뿐만 아니라 실내 공기질을 개선하고 안정적인 생산 환경을 유지하는 데에도 도움을 줍니다. 설치 및 유지 보수가 간편한 산업용 열 회수 박스는 지속 가능성을 높이고 에너지 절약 규정을 준수하려는 공장에 현명한 선택입니다.

Industrial heat recovery box, waste gas and heat recovery, gas to gas heat exchanger

산업용 열 회수 상자, 폐가스 및 열 회수, 가스-가스 열교환기

가마 폐열 회수 및 재사용 시스템 - 가스 스테인리스 스틸 교차 흐름 열교환기 계획

The kiln waste heat recovery and reuse system aims to fully utilize the high-temperature heat in the kiln exhaust gas, and achieve a win-win situation of energy conservation and environmental protection through gas stainless steel cross flow heat exchangers. The core of this solution lies in the use of a stainless steel cross flow heat exchanger, which efficiently exchanges heat between high-temperature exhaust gas and cold air, generating hot air that can be reused.

Working principle: The exhaust gas and cold air flow in a cross flow manner inside the heat exchanger and transfer heat through the stainless steel plate wall. After releasing heat from exhaust gas, it is discharged. Cold air absorbs the heat and heats up into hot air, which is suitable for scenarios such as assisting combustion, preheating materials, or heating.

장점:

Efficient heat transfer: The cross flow design ensures a heat transfer efficiency of 60% -80%.
Strong durability: Stainless steel material is resistant to high temperatures and corrosion, and can adapt to complex exhaust environments.
Flexible application: Hot air can be directly fed back to the kiln or used for other processes, with significant energy savings.
System process: Kiln exhaust gas → Pre treatment (such as dust removal) → Stainless steel heat exchanger → Hot air output → Secondary utilization.

This solution is simple and reliable, with a short investment return cycle, making it an ideal choice for kiln waste heat recovery, helping enterprises reduce energy consumption and improve efficiency.

분무 도장 배기가스로부터 폐열 회수

Spray coating is a surface treatment method that sprays plastic powder onto parts, widely used in various fields such as automotive, electronic products, furniture and appliances, construction industry, machinery, and public facilities. The waste heat recovery plate heat exchanger for spray coating waste gas is an energy recovery device that can recover and utilize the heat energy generated during the high-temperature baking process of spray coating.


작동 원리:
The plate heat exchanger for waste heat recovery from spray coating waste gas transfers the heat from the dry waste gas to other media, such as fresh air or water, to achieve energy recovery and utilization. The device consists of a series of parallel arranged metal plates, and the gas from the heat source and cold source flows cross between the plates, achieving heat transfer through thermal conduction and convective heat transfer of the metal plates.
Application areas:
Spray painted waste gas heat recovery plate heat exchangers are widely used in industries that require a large amount of thermal energy, such as metallurgy, chemical industry, building materials, machinery, electricity, etc. In these industries, the exhaust and smoke exhaust of various smelting furnaces, heating furnaces, internal combustion engines, and boilers, as well as the residual heat of flue gas from industrial kilns, are the main objects of waste heat recovery.
Product advantages:
Efficient heat transfer: The plate type gas waste heat recovery heat exchanger adopts an efficient plate design with a high total heat transfer film coefficient, which can quickly and effectively transfer heat.
Compact structure: The equipment occupies a small area, is lightweight, and has a large heat exchange area per unit volume, making it suitable for situations with limited space.
Safe and reliable: The equipment adopts a fully welded form, and the manufacturing process strictly follows the enterprise standards. Multiple pressure testing procedures ensure that the equipment can be used for a long time without leakage.
Energy saving and environmental protection: By using heat exchange to cool down the waste heat flue gas, the heat recycling system achieves the goal of energy saving, improves the economic efficiency of the enterprise, and reduces operating costs.
matters needing attention:
When selecting and using spray coating waste gas heat recovery plate heat exchangers, it is necessary to design and install them according to specific spray coating process parameters and requirements. It is important to ensure that the selection of the heat exchanger is appropriate, the material is heat-resistant, and appropriate control measures are taken to ensure the stability and safety of the heat exchange process.

건조 폐열 회수

히트펌프 건조열회수 시스템은 식품, 약재, 담배, 목재, 슬러지 등의 건조에 적용할 수 있습니다. 우수한 건조 품질과 높은 자동화 수준을 특징으로 하며 현대 건조 산업에서 에너지 절약, 친환경 및 환경 보호를 위한 최고의 제품이자 선호되는 제품입니다.

이 장치는 역 카르노 원리와 효율적인 열 회수 기술을 활용합니다. 전체 건조 및 제습 과정에서 건조실의 습한 공기는 환기 덕트를 통해 본체에 연결됩니다. 습한 공기의 현열과 잠열을 현열판 열회수장치를 이용하여 열회수 및 재사용함으로써 본체의 성능과 건조속도, 재질의 품질을 대폭 향상시킵니다.

배기가스 폐열 회수 계산 방법

배기가스로부터의 폐열 회수 가능성을 계산하는 두 가지 주요 접근 방식이 있습니다.

1. 열역학적 접근:

This method uses the principles of thermodynamics to determine the theoretical maximum amount of heat that can be recovered. Here's what you need to consider:

  • 질량유량(ṁ) of the exhaust gas (kg/s) - This can be obtained from engine specifications or measured with a flow meter.
  • 비열용량(Cp) of the exhaust gas (kJ/kg⋅K) - This value varies with temperature and needs to be obtained from tables or thermodynamic software for the specific gas composition of your exhaust.
  • 입구온도(T_in) of the exhaust gas (°C) - Measured with a temperature sensor.
  • 출구 온도(T_out) of the exhaust gas after heat recovery (°C) - This is the desired temperature after heat is removed for your chosen application (e.g., preheating combustion air, generating hot water).

열회수 잠재력(Q) 다음 공식을 사용하여 계산할 수 있습니다.

Q = ṁ * Cp * (T_in - T_out)

2. 단순화된 접근 방식:

이 방법은 대략적인 추정치를 제공하며 초기 평가에 사용하기가 더 쉽습니다. 이는 배기가스 에너지의 특정 비율이 회수될 수 있다고 가정합니다. 이 비율은 엔진 유형, 작동 조건 및 선택한 열 교환기 효율에 따라 달라질 수 있습니다.

예상 열 회수율(Q) 다음을 사용하여 계산할 수 있습니다.

Q = 배기가스 에너지 함량 * 회수율

배기가스 에너지 함량 다음과 같이 추정할 수 있습니다.

배기가스 에너지 함량 = 질량유량 * 연료의 저발열량(LHV)

낮은 발열량(LHV) 형성된 수증기가 응축될 때 연소 중에 방출되는 열의 양입니다(연료 사양에서 확인 가능).

회복 인자 일반적으로 엔진 유형, 작동 조건 및 선택한 열 교환기 효율에 따라 20%에서 50% 범위의 백분율입니다.

중요 사항:

  • 이러한 계산은 이론적 또는 추정값을 제공합니다. 실제 열 회수율은 열 교환기의 비효율성 및 배관 손실과 같은 요인으로 인해 더 낮을 수 있습니다.
  • 열역학적 접근 방식에서 선택한 출구 온도(T_out)는 열 교환기의 적용 및 제한 사항을 기반으로 현실적이어야 합니다.
  • 뜨거운 배기가스를 처리할 때는 안전 고려사항이 매우 중요합니다. 폐열 회수 시스템을 설계하고 구현하려면 항상 자격을 갖춘 엔지니어와 상담하십시오.

고려해야 할 추가 요소:

  • 응축: 배기가스 온도가 이슬점 이하로 떨어지면 수증기가 응축됩니다. 이는 추가적인 잠열을 방출할 수 있지만 적절한 응축수 관리가 필요합니다.
  • 파울링: 배기 가스에는 열 교환기 표면을 오염시켜 효율성을 저하시킬 수 있는 오염 물질이 포함될 수 있습니다. 정기적으로 청소하거나 적절한 재료를 선택해야 할 수도 있습니다.

이러한 방법과 요소를 이해함으로써 배기가스에서 폐열 회수 가능성을 계산하고 특정 응용 분야에 대한 타당성을 평가할 수 있습니다.

광산 환기 폐열 회수 열교환기

광산 환기 폐열 회수 열 교환기는 광산 환기 시스템에서 생성된 폐열을 회수하고 활용하는 데 사용되는 장치입니다. 지하 광산 작업에서는 환기 과정에서 상당한 양의 열이 발생하며, 이는 대개 폐기물로 대기 중으로 배출됩니다.

폐열 회수 열 교환기의 목적은 광산 환기 공기의 열을 포착하여 추가 사용을 위해 물이나 공기와 같은 다른 매체로 전달하는 것입니다. 열 교환기는 일반적으로 뜨거운 환기 공기가 통과하는 환기 시스템에 설치되어 열을 2차 매체로 전달합니다.

열 교환기의 열 전달 과정을 통해 환기 공기가 냉각되는 동시에 2차 매체가 가열됩니다. 가열된 2차 매체는 공간 난방, 온수 난방 또는 발전과 같은 다양한 응용 분야에 활용될 수 있습니다.

광산 환기 시스템에 폐열 회수 열 교환기를 구현하면 낭비될 열에너지를 효과적으로 회수 및 사용할 수 있어 에너지 절약 및 광산 작업의 전반적인 에너지 효율성이 향상됩니다. 이러한 접근 방식은 에너지 소비를 줄일 뿐만 아니라 보다 지속 가능하고 환경 친화적인 광산 산업에 기여합니다.

도움이 필요하신가요?
ko_KR한국어